
Teacher
Learning Plan

Digital Skills
Curriculum 2024/25

5th Class



Table of Contents

How to Use This Learning Plan
Module: Introduction to Coding

Week 1
Week 2

Module: Coding and Interactive Creators
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

Module: Game Design Studio
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

Module: Microbit Masterclass
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

Module: Exploring Electronics and Light
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8



How to Use This Learning Plan
This learning plan provides an overview of all the modules available for 5th Class, including their
units, learning goals, and outcomes. Each module is designed to support both new and experienced
teachers with easy-to-follow, step-by-step lessons.

Lesson Types
There are two types of lessons in the Digital Skills Curriculum:

� Teacher-Led Lessons – The teacher directs and leads students through the lesson, guiding them through the activities
and discussions.
� Teacher/Student-Led Lessons – Teachers can choose to lead the lesson, or students can follow the step-by-step
instructions to work through it independently.

Younger students require a fully guided approach, while older students often benefit from working at their own pace with
teacher support as needed.

Flexible Curriculum Approach
Teachers have the flexibility to choose the modules that best fit their class needs. While there are enough lessons to cover a
full school year, it is not necessary to complete all the modules. This allows teachers to tailor the learning experience to their
students while ensuring they meet their educational goals.

Student Access
Students log into the platform to access their lessons. They can follow the step-by-step instructions independently, or teachers
can lead the lesson as needed.

Getting Started
1. Review the Learning Plan: Each module includes an overview of its goals, learning outcomes, lesson structure, and

required resources. Start by familiarising yourself with the curriculum’s scope.
2. Plan Your Lessons: Every lesson includes step-by-step guidance, accessible from your teacher dashboard. Adjust the

pacing and delivery method based on your students' needs.
3. Check Required Equipment: Most lessons only require a laptop, Chromebook, or tablet. Some modules may include

additional materials like microbits or LEDs. The required equipment is listed at the start of each module and each
individual lesson.

4. Support Student Learning: Encourage students to work through the lessons. No prior coding experience is required—
teachers can learn alongside their students.

5. Use Assessments: Each lesson includes a multiple-choice quiz to help assess student understanding and track
progress.

6. Need Help?: We're always happy to answer your questions and give advice. You can contact our team at
info@codingireland.ie or 01 584 9955.



Module: Introduction to Coding
This module introduces students to the fundamentals of coding, starting with an overview of what coding
is and its applications. Teachers should utilise visual aids and interactive discussions. The module
progresses to hands-on experience with Scratch, a coding platform for creating games and animations.
Teachers should familiarise themselves with Scratch and be prepared to assist students. The module
culminates in students creating a Paddle Ball Game, reinforcing their understanding of moving sprites,
changing backdrops, and using sensing blocks. Teachers should ensure students understand X and Y
coordinates and Scratch coding blocks.

Duration Equipment

2 weeks Students can use any of these devices:

Chromebook/Laptop/PC
iPad/Tablet

Module Goals Module Outcomes

1. Understand the concept of coding and its potential
applications.

2. Gain proficiency in using Scratch for creating projects,
including adding sprites and backdrops, and making
sprites move.

3. Experiment with different code blocks in Scratch and
learn from trial and error.

4. Create a Paddle Ball Game using Scratch, incorporating
skills such as moving sprites, changing backdrops, and
using sensing blocks.

5. Understand and apply the concepts of X and Y
coordinates in the context of Scratch projects.

1. Understand the concept of coding and its applications.
2. Develop basic skills in Scratch, including creating

projects, adding sprites and backdrops, and making
sprites move.

3. Experiment with different code blocks in Scratch and
learn from mistakes.

4. Create a Paddle Ball Game using Scratch,
demonstrating the ability to move sprites, change
backdrops, and use sensing blocks.

5. Understand and apply the concepts of X and Y
coordinates in the context of Scratch coding.



Week 1
Lesson: Introduction to Coding

� Beginner � 10 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz

If possible play the video in step 1 on a large screen for all your students to watch together. For steps 2 and 3 you should
discuss and demonstrate these with your students.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

Understand the concept of coding or
programming as giving step-by-step instructions
to a computer.
Identify examples of household items that
contain computers and can be given
instructions.
Recognize the importance of precise and
correct order of instructions in coding.
Practice giving specific instructions in a
sequential order to achieve a desired outcome.

Define coding as the process of giving step-by-step instructions
to a computer.
Identify at least three household items that contain computers
and can be given instructions.
Explain the importance of precise and correct order of
instructions in coding.
Demonstrate the ability to give specific instructions in the
correct order to move from one point to another using a
provided image.

Lesson: Scratch Tutorial

� Beginner � 40 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson introduces students to Scratch, a coding platform for creating games and animations. Teachers should familiarise
themselves with the Scratch website and its functionalities. The lesson guides students through creating a project, removing the
default sprite, adding a new sprite, making it move, adjusting values, creating a loop, adding a backdrop, and encourages
further exploration. Teachers should be prepared to assist with any technical difficulties and encourage experimentation.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet



Learning Goals Learning Outcomes

1. Understand and navigate the Scratch coding platform.
2. Manipulate sprites by adding, removing, and controlling

their movements.
3. Apply basic coding concepts such as loops and event

triggers.
4. Modify code blocks to alter sprite behaviour.
5. Explore and experiment with various Scratch

functionalities to create unique projects.

1. Identify Scratch as a coding platform for creating
games, animations and projects.

2. Navigate and utilise the Scratch website interface.
3. Remove default sprites and add new ones from the

sprite library.
4. Implement basic coding blocks to manipulate sprite

movement.
5. Modify values within code blocks to alter sprite

behaviour.
6. Create a loop within the code to repeat specific

actions.
7. Add a backdrop from the library to enhance the visual

aspect of the project.
8. Explore and experiment with various code blocks to

diversify sprite actions.



Week 2
Lesson: Paddle Ball Game

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through creating a Paddle Ball Game using Scratch. They'll learn to move sprites, change backdrops,
and use sensing blocks. They'll create a new Scratch project, add a paddle and a football sprite, position the ball, make it
bounce, control the paddle, make the ball bounce off the paddle, add a backdrop, add a game over line and program the game
over. Ensure students understand X and Y coordinates, and how to use the Scratch coding blocks.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using Scratch to create a simple game.
2. Understand and apply the concept of sprites and backdrops

in Scratch.
3. Learn to control sprite movements using mouse input.
4. Implement game logic using conditional statements in

Scratch.
5. Understand and apply the concept of X and Y coordinates to

position sprites.

1. Manipulate sprites and backdrops in Scratch.
2. Utilise X and Y coordinates to position sprites.
3. Implement code to control sprite movement and

interaction.
4. Use sensing blocks to detect sprite collision and

mouse position.
5. Create a game over condition using colour

detection.



Module: Coding and Interactive Creators
This module guides students through creating interactive games and animations using Scratch, a visual
programming language. Teachers should prepare to guide students through each project, encouraging
experimentation with code. Some lessons require specific resources, such as uploading images, and are
not suitable for tablets or iPads. The module covers a range of programming concepts, including
controlling movements, creating clones, detecting collisions, and using variables.

Duration Equipment

8 weeks Students can use any of these devices:

Chromebook/Laptop/PC
iPad/Tablet

Module Goals Module Outcomes

1. Master the use of Scratch, a visual programming
language, to create interactive games and animations.

2. Develop skills in controlling character movements,
creating clones, and detecting collisions within a digital
environment.

3. Understand and apply the concept of variables to track
game scores and lives in a game scenario.

4. Learn to incorporate randomness in game elements to
enhance unpredictability and engagement.

5. Gain proficiency in using keyboard and mouse inputs to
control game characters and elements.

1. Develop an interactive game using Scratch,
incorporating character movements, clone creation, and
collision detection.

2. Design and implement a penalty shootout game,
focusing on scoring mechanics.

3. Program keyboard arrow keys to control a car in a
racing game, including creating custom racing tracks.

4. Create a music video in Scratch, integrating music and
animation elements.

5. Develop a colour battle game using multiple sprite
costumes and randomness.

6. Design a space shooter game, utilising mouse controls,
sprite cloning, and variable tracking for score and lives.

7. Program a functional digital clock, accurately
representing hours, minutes, and seconds.

8. Participate in build battles, demonstrating coding
proficiency through various challenges.



Week 1
Lesson: Banana Jump

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through creating a game using Scratch, a visual programming language. The game involves a cat
avoiding falling bananas. Students will learn to control character movements, create clones, and detect collisions. They will start
by creating a new Scratch project, add a backdrop, animate the cat, and add a bananas sprite. They will then program the
bananas to move across the screen and the cat to jump. Finally, they will program the game to stop when the cat touches a
banana. Encourage students to experiment with the code.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and apply the basics of Scratch programming including
character movements, creating clones, and detecting collisions.

2. Create a new project in Scratch and add elements such as
backdrops and sprites.

3. Use loops and conditional statements to animate sprites and control
their movements.

4. Implement collision detection to trigger game events.
5. Develop problem-solving and computational thinking skills through

game development.

1. Utilise Scratch to create and control
character movements in a game.

2. Implement backdrop and sprite additions
from the library in Scratch.

3. Apply loops and costume changes to
animate sprites in Scratch.

4. Develop a game mechanic of jumping using
key press events and coordinate changes.

5. Integrate collision detection to trigger game
events in Scratch.



Week 2
Lesson: Penalty Shootout

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson involves creating a 'Penalty Shootout' game using Scratch. Students will learn to create a new Scratch project,
download and add a goal backdrop, and add the Soccer Ball sprite. They will code the ball's movement, add the Casey sprite as
the goalkeeper, and code the goalkeeper's dive. They will also learn to detect if the goalkeeper makes a save, if the ball hits the
post, and if a goal is scored. This lesson will enhance their coding skills and understanding of game mechanics.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new Scratch project.
2. Learn to download and add backdrops to a Scratch project.
3. Understand how to add and manipulate sprites in Scratch,

including movement and size changes.
4. Gain knowledge on how to use mouse clicks to interact with a

Scratch project.
5. Acquire the ability to implement conditional statements in Scratch

to detect interactions between sprites and backdrop.

1. Develop a new Scratch project and
manipulate sprites and backdrops.

2. Implement code to control sprite size and
position in Scratch.

3. Use mouse-click events to trigger actions in
Scratch.

4. Apply repeat loops and conditional
statements in Scratch to control sprite
movement.

5. Design and implement a scoring system in a
Scratch game.



Week 3
Lesson: Racing Car

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson involves creating a racing car game using Scratch. Teachers should familiarise themselves with Scratch and its
features. The lesson starts with creating a new Scratch project and adding a car sprite. The car is then resized and a racing
track is drawn. The car is placed on the track and a speed variable is created. The car's location is detected and it is
programmed to move forwards, backwards, left, and right. Finally, students test drive their car. Teachers should ensure
students understand each step before moving on.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new
Scratch project.

2. Understand and apply the process of adding and
modifying sprites in Scratch.

3. Gain knowledge in drawing and editing backdrops
in Scratch.

4. Learn to create and manipulate variables to
control sprite properties.

5. Acquire skills in programming sprite movements
and interactions using Scratch blocks.

1. Develop a new Scratch project and remove the default
sprite.

2. Upload a provided car sprite into the Scratch project.
3. Resize the car sprite to 10% of its original size using Scratch

code.
4. Draw a racing track using the backdrop editor in Scratch.
5. Position the car sprite on the track and code its starting

position and direction.
6. Create a 'speed' variable to control the car's speed.
7. Program the car to detect its location and adjust its speed

accordingly.
8. Code the car to move forwards and backwards using the up

and down arrow keys.
9. Code the car to turn left and right using the left and right

arrow keys.
10. Test drive the car using the programmed controls and

observe its speed changes on different surfaces.



Week 4
Lesson: Music Video

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

In this lesson, students will create a music video using Scratch. They'll start by setting up a new project, then choose and
download a music file. They'll learn to add the music to their project and play it. They'll also choose backdrops and sprites,
programming them to change every few seconds. Finally, they'll get creative, using code to add effects and make their video
unique. Ensure students understand the coding concepts and encourage creativity.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating a new project on Scratch.
2. Understand how to select and incorporate music into a

Scratch project.
3. Learn to code music playback in response to a user action.
4. Gain knowledge on adding and manipulating backdrops for

visual appeal.
5. Learn to add and program sprites for interactive elements.
6. Enhance creativity by exploring different coding techniques

to create unique visual effects.

1. Create and manage a new Scratch project.
2. Select and download suitable music files for the

project.
3. Implement code to play the chosen music in the

Scratch project.
4. Choose and integrate appropriate backdrops into

the project.
5. Add and program sprites to perform various

actions in the project.
6. Apply creative coding techniques to enhance the

visual appeal of the project.



Week 5
Lesson: Red v Green v Blue

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students in creating a new Scratch project, focusing on creating and manipulating sprites. Students will create
a red dot sprite, then duplicate and recolour it to create green and blue versions. They will then learn to create a 'count' variable
and use it to clone the dot sprite 100 times. The clones will be coded to appear randomly on the screen, move around, and
'infect' each other, changing colours according to a set rule. Encourage students to think of ways to improve the project.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new
Scratch project.

2. Acquire knowledge in creating and modifying
sprites and costumes in Scratch.

3. Understand and apply the concept of variables
in Scratch programming.

4. Learn to code sprite clones and manage their
behaviour in Scratch.

5. Enhance problem-solving skills by improving and
customising the project.

1. Develop a new Scratch project and remove the default sprite.
2. Create a red dot sprite using the sprite editor.
3. Generate green and blue costumes for the sprite.
4. Create a 'count' variable for counting up to 100.
5. Code the sprite to clone itself 100 times using the 'count'

variable.
6. Programme each clone to randomly select a costume and

position, and then appear on the screen.
7. Code the dots to move in a random direction and bounce off

the screen edges.
8. Programme the dots to change colour when they touch

another dot, according to specific rules.
9. Improve the project based on personal ideas and creativity.



Week 6
Lesson: Space Shooter

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson involves creating a 'Space Shooter' game using Scratch. Students will learn to create a new project, add a
backdrop, create and set up variables for score and lives, add and program sprites (Rocketship, Ball, Balloon1), detect mouse
clicks, create clones of sprites, and implement game logic for scoring points and losing lives. The lesson concludes with testing
the game and discussing potential improvements. Teachers should familiarise themselves with Scratch and the game
mechanics to effectively guide the students.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new
Scratch project.

2. Understand and apply the concept of variables
in game development.

3. Gain proficiency in adding and programming
sprites in Scratch.

4. Learn to implement game mechanics such as
scoring and lives.

5. Enhance problem-solving skills by improving and
modifying the game.

1. Construct a new Scratch project and remove the default sprite.
2. Integrate the Stars backdrop into the project.
3. Create and utilise 'score' and 'lives' variables to track game

progress.
4. Initiate the variables at the start of the game.
5. Add and modify the Rocketship sprite to the project.
6. Program the Rocketship sprite to follow mouse pointer and

respond to up arrow key.
7. Add and adjust the Ball sprite to the project.
8. Add and adjust the Balloon1 sprite to the project.
9. Implement code to detect a mouse click and broadcast a

message.
10. Program the Ball sprite to fire upon receiving the broadcasted

message.
11. Make the Balloon1 sprite appear randomly on the screen and

float in a random direction.
12. Score a point when a balloon is hit by a ball.
13. Decrease a life when a balloon touches the Rocketship sprite.
14. End the game when no lives are left.
15. Play and evaluate the game, considering potential

improvements.



Week 7
Lesson: Make a Clock

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson involves creating a functional clock using Scratch. Teachers should familiarise themselves with the Scratch platform
and the specific code blocks used in this lesson. The lesson involves creating a new Scratch project, uploading a clock face,
drawing and programming the seconds, minutes, and hours hands, and finally, adding a challenge to turn the clock into an
alarm clock. Emphasise the importance of starting the hands from the centre and the mathematical calculations involved in
programming the hands.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and apply the
basics of Scratch
programming.

2. Create and manipulate
sprites in Scratch.

3. Understand the concept of
time and how it is
represented on a clock.

4. Apply mathematical concepts
to program the movement of
clock hands.

5. Extend programming skills by
adding an alarm feature to
the clock.

1. Create a new Scratch project, demonstrating understanding of the Scratch
interface and project creation process.

2. Upload a clock face image to the Scratch project, applying knowledge of how to
import external resources.

3. Draw and position the seconds hand on the clock face, showing proficiency in the
Scratch drawing tools and sprite positioning.

4. Program the seconds hand to move according to the current time, demonstrating
understanding of Scratch's time blocks and basic mathematical operations.

5. Draw and position the minutes hand, further applying the Scratch drawing tools
and sprite positioning.

6. Program the minutes hand to move according to the current time, extending the
use of Scratch's time blocks and mathematical operations.

7. Draw and position the hour hand, continuing to apply the Scratch drawing tools
and sprite positioning.

8. Program the hour hand to move according to the current time, demonstrating a
deeper understanding of Scratch's time blocks, mathematical operations, and the
concept of modulus.

9. Refine the hour hand movement to account for the passing minutes, showing an
ability to enhance the accuracy of the clock's functionality.

10. Extend the project by turning the clock into an alarm clock, demonstrating
creativity and problem-solving skills in Scratch programming.



Week 8
Lesson: Build Battles

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String]

Prepare to facilitate a series of build battles using Scratch. Start with an introduction, then guide students through three timed
challenges: a 10-minute space-themed project, a 5-minute sports-themed project, and a 1-minute open-themed project. Ensure
students understand the time limits and how to submit their projects. Be ready to manage the sharing and judging of projects.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop proficiency in using Scratch for
quick project creation.

2. Apply creative thinking to design and
execute projects under time constraints.

3. Adapt to different themes and incorporate
them into coding projects.

4. Improve presentation skills through
project sharing and discussion.

5. Enhance competitive spirit and teamwork
through build battles.

1. Create a Scratch project with a space theme within a 10-minute
timeframe.

2. Present the created project to peers within a 2-minute timeframe.
3. Develop a Scratch project with a sports theme within a 5-minute

timeframe.
4. Present the sports-themed project to peers within a 2-minute

timeframe.
5. Construct a Scratch project with any theme within a 1-minute

timeframe and present it to peers within a 2-minute timeframe.



Module: Game Design Studio
This module guides students through the creation of various games using MakeCode Arcade. Each
lesson is hands-on and interactive, allowing students to learn by doing. Teachers should ensure students
understand each step before moving on, and encourage experimentation with the code to add new
features to the games. The module concludes with a 'Brainstorming Blast' lesson where students
brainstorm and create their own projects, fostering creativity and teamwork.

Duration Equipment

8 weeks Students can use any of these devices:

Chromebook/Laptop/PC
iPad/Tablet

Module Goals Module Outcomes

1. Master the use of MakeCode Arcade for creating interactive
games, including sprite creation, movement controls, and game
mechanics.

2. Develop proficiency in designing and implementing game
elements such as characters, maps, obstacles, and goals.

3. Understand and apply coding concepts to control game
dynamics, including collision detection, scoring systems, and
win conditions.

4. Enhance problem-solving skills through the creation and
debugging of complex game projects.

5. Strengthen creativity and teamwork abilities through
collaborative game design and development projects.

1. Create and manipulate sprites in MakeCode
Arcade, including movement and interaction.

2. Design and implement game mechanics such
as lives, collision effects, scoring, and game
termination.

3. Develop complex games with features like
mazes, timers, and AI behaviours.

4. Apply creativity and coding skills to design
original arcade projects.

5. Present and critique game projects,
demonstrating teamwork and constructive
feedback.



Week 1
Lesson: First Arcade Project

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson guides students through creating their first arcade project using MakeCode Arcade. They will learn about the code
editor, how to create a new project, add a sprite, choose a sprite from the gallery, move the sprite, draw a tile map, draw walls,
make the camera follow the sprite, add projectiles, set their direction and speed, detect overlap, lose a life, and finally, send the
code to a handheld device. The lesson is hands-on and interactive, allowing students to learn by doing.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and utilise MakeCode
Arcade for creating games.

2. Manipulate the Code Editor to build
and modify game elements.

3. Create and customise sprites for use in
a game.

4. Develop a tile map and implement
walls for game navigation.

5. Implement game mechanics such as
projectiles, sprite movement, and life
count.

1. Understand the functions and features of MakeCode Arcade.
2. Use the MakeCode Arcade code editor to create a new project and add

a sprite.
3. Manipulate the sprite's movements using the direction buttons in the

simulator.
4. Create and edit a tile map, including drawing walls and setting the

camera to follow the sprite.
5. Design and implement projectiles, including setting their direction and

speed, and programming responses to overlaps with the player's sprite.



Week 2
Lesson: Space Dodge

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through creating a 'Space Dodge' game using MakeCode Arcade. Students will learn to create a new
project, design a spaceship sprite, control the spaceship, set the number of lives, create asteroids, set their position and
velocity, auto destroy them when they move off the screen, and detect when an asteroid hits the spaceship. Ensure students
understand the importance of correct variable selection and the effect of different values in the code.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using MakeCode Arcade to
create a game.

2. Understand and apply the concept of sprites
in game development.

3. Implement controls for game characters
using code.

4. Apply the concept of randomisation in game
elements for varied gameplay.

5. Understand and implement game mechanics
such as collision detection and life count.

1. Design and create a spaceship sprite using MakeCode Arcade.
2. Control the spaceship's movement with arrow keys and set

boundaries to prevent it from going off the screen.
3. Set the number of lives for the spaceship.
4. Create and design asteroid sprites that appear at random

positions on the screen.
5. Set the velocity of the asteroids to make them move across the

screen.
6. Implement a function to auto-destroy asteroids when they move

off the screen.
7. Program the game to detect when an asteroid hits the spaceship,

causing it to lose a life and trigger a camera shake effect.



Week 3
Lesson: Bat Battle

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

This lesson guides students through creating a game using MakeCode Arcade. They will learn to create and control a player
sprite, generate enemy sprites, and program interactions between them. The lesson includes coding for scoring points and
ending the game. Teachers should ensure students understand each step before moving on, and encourage experimentation
with the code to add new features to the game.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using MakeCode Arcade to create an interactive game.
2. Understand how to create, control, and position player and enemy

sprites.
3. Learn to program game interactions such as shooting projectiles and

detecting overlaps.
4. Gain knowledge on how to keep score and end the game in MakeCode

Arcade.
5. Enhance problem-solving and debugging skills by experimenting with

the code and adding new features.

1. Create and control a player sprite in
MakeCode Arcade.

2. Generate enemy sprites at random
positions.

3. Program interactions between player
and enemy sprites.

4. Implement a scoring system for hitting
targets.

5. End the game when an enemy sprite
hits the player sprite.



Week 4
Lesson: Prison Break

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through the creation of a 'Prison Break' game using MakeCode Arcade. They will design a character,
create a maze, set a goal and add a timer for challenge. Ensure familiarity with the MakeCode Arcade interface, sprite creation,
and basic coding concepts. Encourage creativity in maze and character design, and emphasise the importance of testing at
each stage. Celebrate their accomplishment in creating a complex, interactive game.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating and controlling a character sprite
in MakeCode Arcade.

2. Understand and apply the concept of designing a maze in a
game environment.

3. Learn to set and implement game goals, such as reaching a
specific location.

4. Gain knowledge on how to add and use a timer to increase
game difficulty.

5. Enhance problem-solving skills through the creation and
navigation of a maze game.

1. Create a new project using MakeCode Arcade.
2. Design and implement a sprite character for the

game.
3. Enable character movement using joystick or

keyboard arrow keys.
4. Design a maze using the tile map editor and set

wall boundaries.
5. Implement camera follow feature to track sprite

movement.
6. Set a goal tile within the maze for the character to

reach.
7. Implement a winning condition when the character

reaches the goal tile.
8. Add a countdown timer to increase game

challenge.



Week 5
Lesson: Arcade Build Battles

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String]

Prepare to facilitate a series of build battles where students create coding projects within set time limits. Ensure students
understand the time constraints and how to share their projects. The battles will vary in length and complexity, from a 15-minute
arcade project, to a 5-minute themed project, and finally a 1-minute character design task.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop and apply coding skills to create an Arcade project
within a specified time limit.

2. Design and create a unique character in Arcade within a one-
minute timeframe.

3. Enhance project management skills by adhering to strict time
constraints during project development.

4. Improve communication skills by sharing and presenting created
projects to peers.

5. Cultivate a competitive spirit and teamwork through participation
in build battles.

1. Create an Arcade project within a 15-minute
time frame.

2. Share the created project within a 2-minute
time frame.

3. Develop an Arcade project with any theme
within a 5-minute time frame.

4. Design a character in Arcade within a 1-
minute time frame.

5. Share the designed character within a 2-
minute time frame.



Week 6
Lesson: Dino Jump

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

In this lesson, students will create an interactive game called 'Dino Jump' using MakeCode Arcade. They will learn how to draw
a map, create a dino character, make it jump, add obstacles, keep score, and determine when the game is won. The lesson
involves creating a new arcade project, drawing the map, creating the dino sprite, adding gravity and movement to the dino,
making it jump, adding cactuses as obstacles, detecting collision with a tree, keeping score, and setting a win condition. The
lesson concludes with a play and review session.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating an interactive game
using MakeCode Arcade.

2. Understand how to draw a map, create a
character, and add movement and gravity effects.

3. Learn to add obstacles and implement collision
detection for game over scenarios.

4. Gain knowledge on how to keep score and
determine winning conditions in a game.

5. Reflect on the game design process and the
elements involved in creating an engaging game.

1. Create a new arcade project on the MakeCode Arcade
website.

2. Draw a map for the Dino Jump game, including ground tiles,
walls, and a finish tile.

3. Create a dino sprite using the sprite editor and code.
4. Implement gravity and movement for the dino sprite, making it

fall to the ground and move forwards through the map.
5. Program the A button to make the dino jump when it is

touching the ground.
6. Add trees to the map as obstacles for the dino to jump over.
7. Implement game over functionality when the dino sprite hits a

tree.
8. Keep score based on how long the player can go without

hitting a tree.
9. Detect when the player reaches the end of the game and

display a winning screen.
10. Play and review the Dino Jump game, reflecting on the

elements of game design learned during the lesson.



Week 7
Lesson: Monster Battle Arena

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through creating a 'Monster Battle Arena' game using MakeCode Arcade. They will learn to create
player-controlled and AI-controlled sprites, implement combat mechanics, health systems, and AI behaviours. Students will also
learn to create a new project, design sprites, make the monster move, implement a health system, create a combat system, and
determine the winner. Encourage creativity and experimentation with the game's features.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop a player-controlled sprite and an AI-
controlled monster in a game using
MakeCode Arcade.

2. Create and manage a new project in
MakeCode Arcade.

3. Implement a health system for player and
monster sprites.

4. Develop a combat system where player and
monster sprites can inflict damage on each
other.

5. Implement a win/lose condition based on the
health of player and monster sprites.

1. Create and control a player sprite using MakeCode Arcade,
ensuring it moves smoothly within the screen boundaries.

2. Program an AI-controlled monster sprite with randomized
movement, simulating intelligent behavior.

3. Implement a health system that tracks and displays the health
values of both the player and the monster during the game.

4. Develop a combat system that reduces player health upon
collision with the monster and allows the player to shoot
projectiles at the monster.

5. Determine the game's winner by programming conditions that end
the game when either the player's or monster's health reaches
zero.



Week 8
Lesson: Game Lab

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String]

In this lesson, 'Brainstorming Blast', students will brainstorm ideas for their own MakeCode Arcade projects. Start by introducing
the lesson and demonstrating a simple MakeCode Arcade project. Divide students into small groups for brainstorming,
reminding them of the importance of teamwork. Set a timer for the brainstorming session and encourage students to keep their
ideas simple and achievable. After brainstorming, each group will present their project idea and receive feedback from the
class. Students will then create their projects in MakeCode Arcade, with the teacher providing assistance as needed. Finally,
conduct a 'Show and Tell' session where each group presents their project to the class.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC
iPad/Tablet

Learning Goals Learning Outcomes

1. Develop and articulate original ideas for a
simple MakeCode Arcade project.

2. Collaborate effectively in small groups to
brainstorm and refine project ideas.

3. Present project ideas clearly and
constructively, incorporating feedback from
peers and teachers.

4. Apply basic MakeCode Arcade blocks to
create a simple game or interactive project.

5. Reflect on the process of project creation,
identifying learning points and areas for
improvement.

1. Brainstorm and develop a simple, achievable idea for a
MakeCode Arcade project.

2. Collaborate effectively within a group to discuss and refine project
ideas.

3. Present a project idea to the class, explaining the concept,
sprites, and tile maps planned for use.

4. Constructively receive and incorporate feedback to improve the
project plan.

5. Create a MakeCode Arcade project based on the brainstormed
idea, demonstrating basic proficiency in using MakeCode Arcade
blocks.



Module: Microbit Masterclass
This module will guide teachers through an engaging exploration of microbits, pocket-sized
programmable computers. Teachers will introduce students to coding, creating projects, and programming
microbits to display messages, play melodies, and respond to movement. Subsequent lessons will involve
designing games, creating an alarm system, designing a weather station, and even turning a microbit into
a pet. Teachers should ensure students understand the utility of variables, functions, and conditionals,
and encourage experimentation with different blocks from the toolbox.

Duration Equipment

8 weeks Students can use any of these devices:

Chromebook/Laptop/PC

Required Equipment:

Microbit

Module Goals Module Outcomes

1. Master the fundamentals of microbits, including project
creation, code addition and deletion, and programming for
various responses.

2. Develop skills in designing and coding interactive games
using microbits, focusing on reaction time measurement.

3. Apply knowledge of microbits to create a Magic 8 Ball,
enhancing understanding of random response generation.

4. Design and implement a microbits-based alarm system,
demonstrating proficiency in using sensors and setting
threshold values.

5. Create a microbits weather station, showcasing ability to
display sensor readings based on button presses.

6. Utilise radio signals to detect proximity between two
microbits, demonstrating understanding of radio group setup
and message transmission.

7. Design and code a guessing game on microbits, reinforcing
skills in variable creation, button programming, and game
logic implementation.

8. Transform a microbit into an interactive pet, demonstrating
creativity and understanding of user interaction.

1. Program a microbit to display messages, react to
button presses, show icons, play melodies, and
respond to movement.

2. Design and create a reaction timer game using a
microbit, improving reaction times to random visual
prompts.

3. Develop a Magic 8 Ball project using a microbit,
providing random responses to questions upon
shaking.

4. Create a microbit-based alarm system, utilising
sensors to detect movement and sound and
activate the system.

5. Design a microbit weather station, displaying
different sensor readings based on button presses.

6. Use radio signals between two microbits to detect
proximity, creating a 'Microbit Finder'.

7. Develop a 'Higher or Lower' game on a microbit,
programming button inputs and implementing
game logic.

8. Transform a microbit into an interactive pet with
different emotions based on user interaction.



Week 1
Lesson: Exploring Microbits

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz

Prepare to introduce students to the world of microbits, a pocket-sized programmable computer. The lesson will involve creating
a new project on the MakeCode for microbit website, familiarising with the project editor, and writing code to display numbers,
names, and icons. Students will also learn to delete code, connect their microbits to their computers, and program their
microbits to play music. The lesson concludes with an exploration phase where students can experiment with different blocks
from the toolbox.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand the basic functionality and features of a
microbit.

2. Create a new project using the MakeCode for microbit
website.

3. Use the Project Editor to write and simulate code.
4. Program the microbit to display numbers and text on its

LED grid.
5. Program the microbit to respond to button presses with

specific actions.

1. Identify the functions and capabilities of a microbit.
2. Create a new project on the MakeCode for microbit

website.
3. Understand the layout and functions of the Project

Editor.
4. Write and execute code to display numbers and names

on the microbit.
5. Program the microbit to respond to button presses with

specific displays.
6. Connect and download code to an actual microbit

device.
7. Compose and program a melody to play on the microbit.
8. Explore and experiment with different coding blocks and

functions.



Week 2
Lesson: Reaction Timer

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students in creating a 'Reaction Timer' project using Micro:bit. They'll start by setting up a new project, then
create a welcome message and a countdown. Next, they'll add a random delay to make the game unpredictable. They'll create
variables to store time stamps, and finally, record the player's reaction time. Familiarise yourself with the code snippets
provided.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new project on
the Micro:bit platform.

2. Acquire knowledge on how to create and display
messages using code.

3. Understand and apply the concept of countdowns and
delays in programming.

4. Learn to create and utilise variables for storing time
stamps.

5. Gain proficiency in recording and displaying user
interactions in real-time.

1. Develop a new project using the Micro:bit website.
2. Construct a welcome message to display upon

powering on the Microbit.
3. Create a countdown sequence with visual cues using

code.
4. Implement a random delay function in the game for

unpredictability.
5. Create and utilise variables to store time stamps.
6. Record and display player reaction time upon button

press.



Week 3
Lesson: Microbit Magic 8 Ball

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through creating a new Microbit project on the makecode.microbit.org website. They will learn to
display the number 8, detect a shake gesture, and create a variable called 'Random Number'. They will set this variable to a
random number between 0 and 4 when the Microbit is shaken. Each number will correspond to a different response from the
magic 8 ball. Students will then check the value of the variable and add custom messages for each condition. Encourage
creativity in crafting these messages. They can then expand the range of the 'Random Number' variable to add more messages.
Finally, they will download the code to their Microbit and play.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and utilise the Microbit project
creation process.

2. Implement code to display a number on the
Microbit.

3. Apply gesture detection functionality in
Microbit programming.

4. Create and manipulate variables to generate
random numbers.

5. Develop conditional statements to check
variable values and display corresponding
messages.

1. Develop a new Microbit project using makecode.microbit.org.
2. Display the number 8 on the Microbit when it is not being

shaken.
3. Program the Microbit to detect a shake gesture.
4. Create and utilise a variable called 'Random Number' to

generate a random number between 0 and 4 when the Microbit is
shaken.

5. Check the value of the 'Random Number' variable and associate
it with a specific response.

6. Add custom messages for each possible value of the 'Random
Number' variable.

7. Expand the range of the 'Random Number' variable to add more
messages.

8. Download and implement the code on a physical Microbit device.



Week 4
Lesson: Creating a Microbits Alarm System

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare for the 'Creating a Microbits Alarm System' lesson by familiarising yourself with the Microbits MakeCode editor.
Understand the process of creating new projects and setting up variables. Grasp the concept of arming and disarming the alarm
system using button inputs. Understand how to define a function for the alarm and set up triggers based on sound and light
thresholds. Finally, be ready to guide students through testing their alarm systems in a simulator or on a physical device.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and apply the concept of variables in
Microbits programming.

2. Develop skills to use input functions for button
presses on the Microbit device.

3. Learn to create and utilise functions for specific
tasks in coding.

4. Gain knowledge on using sensor inputs (sound and
light) to trigger events.

5. Apply testing and debugging skills to ensure the
functionality of the Microbits alarm system.

1. Develop a new project using the Microbits MakeCode
editor.

2. Establish sound and light threshold variables for the alarm
system.

3. Implement a function to arm the alarm system using the A
button on the Microbit.

4. Design a function to disarm the alarm system using the B
button on the Microbit.

5. Define a function to sound and flash the alarm when
triggered.

6. Set up alarm triggers that monitor sensor values and
activate the alarm when thresholds are crossed.

7. Test the alarm system in a simulator and on a physical
Microbits device.



Week 5
Lesson: Designing a Microbits Weather Station

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare for this lesson by familiarising yourself with the MakeCode for Microbit platform and the coding language used.
Understand the purpose of variables and how they can be initialised and manipulated. Be prepared to guide students through
the process of creating a new project, configuring buttons and sensors, creating a 'forever' loop, and testing their program.
Encourage reflection on the learning process and potential applications of the skills learned.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand how to create a new project on
MakeCode for Microbit.

2. Learn to declare and initialise variables in a
Microbit project.

3. Gain skills in configuring Microbit buttons and
sound detection.

4. Develop the ability to create a 'forever' loop
and display sensor data.

5. Reflect on the learning process and consider
potential applications of Microbit sensors.

1. Develop a new project using MakeCode for Microbit.
2. Declare and initialise variables 'mode' and 'reading' for sensor

data display and storage.
3. Configure Button A to set 'mode' to 1 when pressed.
4. Configure Button B to set 'mode' to 2 when pressed.
5. Configure Buttons A and B together to set 'mode' to 3 when

pressed simultaneously.
6. Configure the Microbit to switch to mode 4 when a loud sound is

detected.
7. Create a 'forever' loop to check the value of 'mode' and display

the relevant sensor data.
8. Test the program using a physical Microbit or the simulator on the

MakeCode website.
9. Reflect on the learning process, understanding how the different

sensors on the Microbit work and potential other projects.



Week 6
Lesson: Microbit Finder

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare two Microbits and ensure one is portable. The lesson involves creating a code to be downloaded onto both Microbits,
using A and B buttons to set 'lost' and 'finder' Microbits. The project requires creating two variables, setting a radio group for
communication, programming buttons to set modes, sending and receiving messages, and displaying proximity. The code is
then downloaded onto both Microbits for a practical demonstration.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and utilise Microbit's radio
communication feature.

2. Create and manipulate variables in a Microbit
project.

3. Program Microbit's buttons to perform
specific actions.

4. Interpret signal strength to determine
proximity between two Microbits.

5. Apply coding skills to create a practical
Microbit application.

1. Programme two Microbits to act as a 'finder' and a 'lost' device
using A and B buttons.

2. Create and utilise 'mode' and 'signal' variables to control Microbit
actions.

3. Set up a radio group for Microbits to communicate with each
other.

4. Code the 'lost' Microbit to continuously send a signal for the
'finder' Microbit to detect.

5. Interpret the signal strength of the received message to determine
the proximity of the 'lost' Microbit.



Week 7
Lesson: Microbit Pet

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

In this lesson, students will transform their Microbits into interactive pets. They will use emoji icons and sounds to make the
Microbits seem lifelike, programming them to respond to different actions such as shaking, touching, and flipping. Students will
create functions for different states of the pet, like happy, sad, hungry, bored, and asleep. They will also learn to use the
Microbit's sensors to detect these actions. The lesson involves coding in the Microbit's online editor, testing the code in a
simulator, and finally downloading it onto their Microbits.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop skills in creating and using functions in
Microbit programming.

2. Understand and apply the use of different sensors on
the Microbit device.

3. Gain knowledge in programming interactive
responses using sound and visual cues.

4. Learn to use random time intervals in programming for
unpredictable outcomes.

5. Enhance problem-solving skills by debugging and
testing code in a simulator and on a physical device.

1. Program Microbit to display different emoji icons and
sounds to simulate pet behaviours.

2. Create a new Microbit project using the provided website.
3. Develop functions such as 'happy', 'feedme', and 'play' to

control pet behaviours.
4. Implement gesture controls to interact with the Microbit

pet, such as shaking, flipping, and touching the logo.
5. Test the programmed Microbit pet in the simulator and

download the code onto a physical Microbit.



Week 8
Lesson: Microbit Lab

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String]

Prepare to introduce the concept of Microbit projects, demonstrating a simple LED pattern to inspire creativity. Organise
students into small groups for brainstorming, emphasising teamwork and achievable project ideas. Facilitate a feedback session
after idea presentations, guiding project simplification if necessary. Assist during project creation, encouraging peer support and
discovery sharing. Finally, conduct a 'Show and Tell' session, celebrating student effort and creativity, reinforcing learning
objectives and the importance of teamwork.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop creative and achievable project ideas
using basic Microbit blocks.

2. Collaborate effectively in small groups to
brainstorm, plan and execute a Microbit project.

3. Present project ideas clearly and receive
feedback constructively.

4. Apply problem-solving skills to create a Microbit
project based on the brainstormed idea.

5. Reflect on the project creation process,
discussing changes made, challenges faced, and
skills learned.

1. Brainstorm and develop a simple Microbit project idea in a
group setting.

2. Present the project idea to the class, explaining the planned
LED patterns and inputs.

3. Receive, incorporate, and respond to feedback on the project
idea.

4. Create a Microbit project based on the brainstormed idea,
using basic Microbit blocks.

5. Present the final Microbit project to the class, explaining the
coding process and any changes made during the project
creation.



Module: Exploring Electronics and Light
This module explores the exciting world of electronics and light, using Microbit and LED strips. Teachers
will guide students through creating colourful displays, sound-activated lights, visual thermometers, and
even a precision game. The module encourages creativity, problem-solving, and teamwork, with students
brainstorming and implementing their own Microbit projects. Teachers should ensure students understand
each step and concept before progressing, and provide assistance during the project creation stages.

Duration Equipment

9 weeks Students can use any of these devices:

Chromebook/Laptop/PC

Required Equipment:

LED Strip with crocodile clips
Microbit

Module Goals Module Outcomes

1. Understand and apply the principles of
programming LED strips using Microbit projects.

2. Develop skills to create interactive LED displays
that respond to sound and temperature changes.

3. Design and implement a game using LED strip
and Microbit programming.

4. Enhance creativity and problem-solving skills
through the design of LED flags and stacking
effects.

5. Apply teamwork and project management skills in
brainstorming and executing a group Microbit
project.

1. Programme a strip of LEDs to display colourful patterns using
Microbit.

2. Design and implement an LED Strip Clapper that responds to
sound, specifically a clap, to turn on and off.

3. Convert an LED strip into a visual thermometer that lights up
and changes colour according to the current temperature.

4. Create a voice-activated 'Shooting Stars' display using an
LED strip and Microbit.

5. Design and code tricolour flags using LED strips.
6. Create a stacking effect on an LED strip, controlled by

Microbit, with the ability to increase and decrease the size of
the stack.

7. Develop an LED Strip Precision Game that involves timing
and accuracy.

8. Brainstorm, design, and implement a simple Microbit project
in a team, demonstrating creativity and teamwork.



Week 1
Lesson: Microbit LED Strip

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through programming a 30 LED strip using Microbits. Ensure understanding of creating a new
Microbit project and adding the neopixel extension. Facilitate the setup of the LED strip and programming it to turn red. Assist
with downloading the project onto the Microbit. Encourage creativity when programming the strip to show a rainbow of colours
and rotating the rainbow. Finally, encourage exploration of other code blocks in the Neopixel toolbox.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Understand and apply the process of programming a strip of
LEDs using Microbits.

2. Develop skills in creating a new Microbit project and adding
the necessary extensions.

3. Gain proficiency in setting up and programming the LED strip
to display various colours.

4. Learn to download and implement the project on Microbits,
observing the effects on the LED strip.

5. Explore and experiment with different code blocks in the
Neopixel toolbox for creative lighting effects.

1. Program a strip of 30 LEDs to light up in
different ways using Microbits.

2. Create a new Microbit project and add the
neopixel extension.

3. Set up the LED strip and interact with it using a
variable.

4. Program the A button on the Microbit to turn all
the LEDs red.

5. Program the LED strip to show a rainbow of
colours when the Microbit turns on.



Week 2
Lesson: LED Strip Clapper

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

In this lesson, students will create an LED Strip Clapper using a Microbit project. They will add the neopixel extension, set up
the LED strip, and create an 'on' variable. The lesson will guide them to detect a clap, turning the LED strip on and off
accordingly. They will download their code onto their microbit, connect it to the LED strip, and explore further improvements.
Familiarity with Microbit and basic coding is beneficial.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new Microbit project.
2. Understand and apply the neopixel extension for programming

an LED strip.
3. Learn to set up and interact with the LED strip using variables.
4. Gain knowledge on creating and manipulating variables to

control the state of the LED strip.
5. Develop the ability to detect sound inputs and use them to

trigger changes in the LED strip's state.

1. Develop a new Microbit project using
makecode.microbit.org.

2. Integrate the neopixel extension into the project
for LED strip programming.

3. Establish a variable for the LED strip and set its
value to 30.

4. Create an 'on' variable to control the LED strip's
state.

5. Implement a sound detection feature to trigger
the LED strip's state change.



Week 3
Lesson: Microbit LED Strip Thermometer

� Beginner � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare for this lesson by familiarising yourself with the Microbit project platform and the neopixel extension. Understand how to
set up the LED strip and how to program the A button to display temperature. Be ready to guide students in lighting up the LED
lights according to temperature readings and downloading their projects onto their Microbits. Ensure you know how to correctly
connect the LED strip to the Microbit.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Develop skills to create and manage a new Microbit
project.

2. Understand and apply the neopixel extension to
program the LED strip.

3. Gain knowledge on setting up the LED strip and
displaying temperature on the Microbit screen.

4. Learn to light up the LED lights on the strip
according to the temperature readings.

5. Acquire practical skills in downloading the project,
connecting the LED strip to the Microbit, and testing
the functionality.

1. Create a new Microbit project using
makecode.microbit.org.

2. Add the neopixel extension to the project for LED strip
programming.

3. Set up the LED strip in the project with a value of 30,
representing the 30 LEDs on the strip.

4. Program the A button to display the temperature on the
Microbit screen.

5. Display the temperature by lighting up the LED lights on
the strip, with the number of lights corresponding to the
temperature reading.

6. Download the project and transfer it to the Microbit.
7. Connect the LED strip to the Microbit using the specified

pin connections and power it using a USB cable.



Week 4
Lesson: Shooting Stars

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students in creating a Microbit project, adding the neopixel extension, and setting up the LED strip. Facilitate
the creation of a 'star' that lights up with a loud sound, and ensure students can test this on their LED strip. Assist students in
making the 'star' shoot along the strip and adding random colours. Finally, ensure students can download and test their code,
encouraging them to create multiple shooting stars.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a
new Microbit project.

2. Understand and apply the neopixel
extension to program the LED strip.

3. Gain proficiency in setting up and
programming the LED strip using code
blocks.

4. Learn to utilise the microphone in the
microbit to detect sound and trigger LED
actions.

5. Acquire knowledge on how to test and
debug the project on the LED strip.

6. Master the concept of pixel shifting to
create the illusion of moving light.

7. Experiment with random colour generation
for the LED strip.

8. Learn to download and implement the code
onto the microbit for real-world testing.

1. Create and manage a new Microbit project.
2. Integrate the neopixel extension into the project.
3. Set up and programme the LED strip using the provided code.
4. Develop a function to light up the first LED on the strip white when

a loud sound is detected.
5. Test the function on the LED strip and ensure it works as expected.
6. Implement a function to make the 'star' shoot along the strip.
7. Enhance the function to display stars in random colours.
8. Download and test the final code on the microbit, ensuring different

colour 'stars' shoot along the strip when a loud noise is made.



Week 5
Lesson: LED Flags

� Intermediate � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students in creating LED flags using a Microbit project. They will need to understand how to add the neopixel
extension and set up the LED strip. Facilitate as they create bicolor and tricolor flags, using the example of Malta and Ireland
respectively. Encourage creativity and problem-solving skills for the challenge of representing the American flag.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Understand and apply the concept of bicolor and tricolor
flags using LED strips.

2. Create and manage a new Microbit project effectively.
3. Utilise the neopixel extension to program the LED strip.
4. Develop skills to set up and interact with the LED strip

using code.
5. Apply coding skills to create complex patterns, such as the

American flag, on the LED strip.

1. Construct bicolor and tricolor flags using LED strips.
2. Utilise the neopixel extension to program the LED

strip.
3. Set up and interact with the LED strip using a

variable.
4. Apply the concept of ranges to light up specific

sections of the LED strip.
5. Code the LED strip to represent complex flag

designs, such as the American flag.



Week 6
Lesson: LED Stacking

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare for this lesson by familiarising yourself with the Microbit project platform and the neopixel extension. Understand how to
set up an LED strip and create variables to store the strip and the amount of LEDs. Be ready to guide students in creating a
function to show the LED stack, and programming buttons to increase and decrease the stack. Ensure students know how to
download their code and connect their LED strip to their microbit.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Develop skills in creating and
managing a new Microbit project.

2. Understand and apply the neopixel
extension for LED programming.

3. Learn to set up and interact with
the LED strip using variables.

4. Develop competency in creating
and using functions to control LED
display.

5. Gain experience in programming
button controls to manipulate LED
stack size.

1. Create a new Microbit project using makecode.microbit.org.
2. Add the neopixel extension to the project for LED strip programming.
3. Set up the LED strip with a variable storing the strip, set to a value of 30.
4. Create an 'amount' variable to store the number of LEDs in the stack.
5. Develop a 'showStack' function to display the stack of lit LEDs.
6. Create a range of LEDs on the strip to light up, using the 'amount' variable,

and call the 'showStack' function from the 'on start' block.
7. Program button A to increase the LED stack by adding 1 to the 'amount'

variable and calling the 'showStack' function.
8. Program button B to decrease the LED stack by subtracting 1 from the

'amount' variable and calling the 'showStack' function.
9. Download the code onto a microbit, connect the LED strip using crocodile

clips, and test the LED stack's increase and decrease functions with buttons
A and B.



Week 7
Lesson: LED Strip Precision Game

� Advanced � 80 mins System.Threading.Tasks.Task`1[System.String] � Student Quiz � Student Challenge

Prepare to guide students through creating an interactive LED strip game using a Microbit project. Familiarise yourself with the
neopixel extension and the process of setting up the LED strip. Understand the purpose of the four variables: 'target', 'position',
'delay', and 'increment'. Be ready to explain how to set up the level, create a refresh function, and make the blue light move.
Prepare to guide students through the steps of going back to the start, hitting the target, and handling a missed target. Finally,
ensure you can assist students in downloading their code and playing the game.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit
LED Strip with crocodile clips

Learning Goals Learning Outcomes

1. Understand and apply the concept of LED strip
programming using Microbit.

2. Develop skills in creating and manipulating variables
in a coding project.

3. Learn to create and use functions for specific tasks
within a coding project.

4. Gain proficiency in using conditional statements to
control game outcomes.

5. Develop the ability to download and test code on a
physical device.

1. Program an LED strip to light up specific LEDs in
response to user input.

2. Create and manipulate variables to control game
mechanics in a Microbit project.

3. Implement the neopixel extension to interact with an LED
strip.

4. Design a function to refresh LED lights based on variable
values.

5. Download and test the code on a physical Microbit
device.



Week 8
Lesson: Microbit Lab

� Advanced � 60 mins System.Threading.Tasks.Task`1[System.String]

Prepare to introduce the concept of Microbit projects, demonstrating a simple LED pattern to inspire creativity. Organise
students into small groups for brainstorming, emphasising teamwork and achievable project ideas. Facilitate a feedback session
after idea presentations, guiding project simplification if necessary. Assist during project creation, encouraging peer support and
discovery sharing. Finally, conduct a 'Show and Tell' session, celebrating student effort and creativity, reinforcing learning
objectives and the importance of teamwork.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop creative and achievable project ideas
using basic Microbit blocks.

2. Collaborate effectively in small groups to
brainstorm, plan and execute a Microbit project.

3. Present project ideas clearly and receive
feedback constructively.

4. Apply problem-solving skills to create a Microbit
project based on the brainstormed idea.

5. Reflect on the project creation process,
discussing changes made, challenges faced, and
skills learned.

1. Brainstorm and develop a simple Microbit project idea in a
group setting.

2. Present the project idea to the class, explaining the planned
LED patterns and inputs.

3. Receive, incorporate, and respond to feedback on the project
idea.

4. Create a Microbit project based on the brainstormed idea,
using basic Microbit blocks.

5. Present the final Microbit project to the class, explaining the
coding process and any changes made during the project
creation.

© 2025 Coding Ireland. All rights reserved.

This learning plan and its contents are provided exclusively for use with the Digital Skills Curriculum and may not be
reproduced, distributed, or shared without prior written permission from Coding Ireland. For more information, please visit
https://www.codingireland.ie.

https://www.codingireland.ie

	Teacher Learning Plan
	Digital Skills Curriculum 2024/25

	Table of Contents
	How to Use This Learning Plan
	Lesson Types
	Flexible Curriculum Approach
	Student Access
	Getting Started

	Module: Introduction to Coding
	Week 1
	Lesson: Introduction to Coding
	Lesson: Scratch Tutorial

	Week 2
	Lesson: Paddle Ball Game


	Module: Coding and Interactive Creators
	Week 1
	Lesson: Banana Jump

	Week 2
	Lesson: Penalty Shootout

	Week 3
	Lesson: Racing Car

	Week 4
	Lesson: Music Video

	Week 5
	Lesson: Red v Green v Blue

	Week 6
	Lesson: Space Shooter

	Week 7
	Lesson: Make a Clock

	Week 8
	Lesson: Build Battles


	Module: Game Design Studio
	Week 1
	Lesson: First Arcade Project

	Week 2
	Lesson: Space Dodge

	Week 3
	Lesson: Bat Battle

	Week 4
	Lesson: Prison Break

	Week 5
	Lesson: Arcade Build Battles

	Week 6
	Lesson: Dino Jump

	Week 7
	Lesson: Monster Battle Arena

	Week 8
	Lesson: Game Lab


	Module: Microbit Masterclass
	Week 1
	Lesson: Exploring Microbits

	Week 2
	Lesson: Reaction Timer

	Week 3
	Lesson: Microbit Magic 8 Ball

	Week 4
	Lesson: Creating a Microbits Alarm System

	Week 5
	Lesson: Designing a Microbits Weather Station

	Week 6
	Lesson: Microbit Finder

	Week 7
	Lesson: Microbit Pet

	Week 8
	Lesson: Microbit Lab


	Module: Exploring Electronics and Light
	Week 1
	Lesson: Microbit LED Strip

	Week 2
	Lesson: LED Strip Clapper

	Week 3
	Lesson: Microbit LED Strip Thermometer

	Week 4
	Lesson: Shooting Stars

	Week 5
	Lesson: LED Flags

	Week 6
	Lesson: LED Stacking

	Week 7
	Lesson: LED Strip Precision Game

	Week 8
	Lesson: Microbit Lab



