
Teacher
Learning Plan

Digital Skills
Curriculum 2024/25

Transition Year

Table of Contents

How to Use This Learning Plan

Module: Introduction to Coding Concepts
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Module: Exploring Microbit Programming
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Module: Game Design Essentials
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Module: Robotic Cars and Automation
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Module: Exploring Digital Art and Design
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Module: Web Design Basics
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Module: Dynamic Web Design
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Module: Introduction to Python
Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

How to Use This Learning Plan
This learning plan provides an overview of all the modules available for Transition Year, including their
units, learning goals, and outcomes. Each module is designed to support both new and experienced
teachers with easy-to-follow, step-by-step lessons.

Lesson Types

There are two types of lessons in the Digital Skills Curriculum:

 Teacher-Led Lessons – The teacher directs and leads students through the lesson, guiding them through the activities
and discussions.

 Teacher/Student-Led Lessons – Teachers can choose to lead the lesson, or students can follow the step-by-step
instructions to work through it independently.

Younger students require a fully guided approach, while older students often benefit from working at their own pace with teacher
support as needed.

Flexible Curriculum Approach

Teachers have the flexibility to choose the modules that best fit their class needs. While there are enough lessons to cover a full
school year, it is not necessary to complete all the modules. This allows teachers to tailor the learning experience to their
students while ensuring they meet their educational goals.

Student Access

Students log into the platform to access their lessons. They can follow the step-by-step instructions independently, or teachers
can lead the lesson as needed.

Getting Started

1. Review the Learning Plan: Each module includes an overview of its goals, learning outcomes, lesson structure, and
required resources. Start by familiarising yourself with the curriculum’s scope.

2. Plan Your Lessons: Every lesson includes step-by-step guidance, accessible from your teacher dashboard. Adjust the
pacing and delivery method based on your students' needs.

3. Check Required Equipment: Most lessons only require a laptop, Chromebook, or tablet. Some modules may include
additional materials like microbits or LEDs. The required equipment is listed at the start of each module and each individual
lesson.

4. Support Student Learning: Encourage students to work through the lessons. No prior coding experience is required—
teachers can learn alongside their students.

5. Use Assessments: Each lesson includes a multiple-choice quiz to help assess student understanding and track progress.

6. Need Help?: We're always happy to answer your questions and give advice. You can contact our team at
info@codingireland.ie or 01 584 9955.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts

Module: Introduction to Coding Concepts
This module introduces students to the world of coding, starting with a basic understanding of what
coding is and its importance in today's world. The module progresses to practical coding exercises using
Scratch, where students will learn to create games, animations, and projects. They will learn to control
sprites, use sensing blocks, and create backdrops. The module also covers programming keys on a
keyboard, creating sprites with multiple costumes, introducing randomness to elements of a project, and
creating unique patterns. The module concludes with a project showcase. Teachers should facilitate
exploration, answer questions, and encourage creativity and practice.

Duration Equipment

11 weeks Students can use any of these devices:

Chromebook/Laptop/PC

iPad/Tablet

Module Goals Module Outcomes

1. Grasp fundamental coding concepts and
their applications in various fields.

2. Develop proficiency in using Scratch to
create games, animations, and projects.

3. Understand and apply coding principles to
create interactive games and simulations.

4. Learn to manipulate variables, loops, and
sprites to create complex patterns and
autonomous systems.

5. Develop the ability to showcase and explain
personal coding projects effectively.

1. Understand the basic concepts of coding and its applications in the
real world.

2. Navigate and utilise Scratch to create simple games and
animations, including manipulating sprites, blocks, loops, and
backdrops.

3. Develop interactive games using Scratch, incorporating elements
such as moving sprites, backdrops, sensing blocks, and keyboard
controls.

4. Apply advanced Scratch features to create complex animations and
games, including cloning, colour detection, and autonomous
navigation.

5. Present and showcase a completed coding project, demonstrating a
comprehensive understanding of coding concepts and practical
application in Scratch.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 1

Week 1

Lesson: An Introduction to Coding

● Beginner  60 mins  Teacher/Student led  Student Quiz

For this lesson, teachers should familiarise themselves with the basic concepts of coding, its importance in today's digital age,
and the various coding languages. They should be prepared to explain how coding is the backbone of modern technology, a
valuable skill in the job market, and a tool for enhancing problem-solving skills. Teachers should also be ready to introduce
Scratch, a beginner-friendly coding language, and discuss the prevalence of coding in everyday devices and applications.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the concept of coding and its role as a
language for digital devices.

2. Appreciate the importance of coding in modern
technology, job market, and its contribution to problem-
solving and logical thinking.

3. Identify different coding languages and their
applications, with a focus on Scratch as a beginner-
friendly option.

4. Recognise the prevalence of coding in everyday devices
and applications, and its broad implications in daily life.

1. Understand the concept of coding and its role in
instructing digital devices.

2. Appreciate the importance of coding in creating modern
technology, enhancing job prospects, and improving
problem-solving skills.

3. Identify Scratch as a beginner-friendly coding language
and recognise its role in creating stories, games, and
animations.

4. Recognise the presence and influence of coding in
everyday devices and applications.

5. Develop curiosity and interest in learning more about
coding and its broad applications.

Lesson: Scratch Tutorial

● Beginner  40 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson introduces students to Scratch, a coding platform for creating games and animations. Teachers should familiarise
themselves with the Scratch website and its functionalities. The lesson guides students through creating a project, removing the
default sprite, adding a new sprite, making it move, adjusting values, creating a loop, adding a backdrop, and encourages further
exploration. Teachers should be prepared to assist with any technical difficulties and encourage experimentation.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and navigate the Scratch coding platform.

2. Manipulate sprites by adding, removing, and controlling
their movements.

3. Apply basic coding concepts such as loops and event
triggers.

4. Modify code blocks to alter sprite behaviour.

5. Explore and experiment with various Scratch
functionalities to create unique projects.

1. Identify Scratch as a coding platform for creating
games, animations and projects.

2. Navigate and utilise the Scratch website interface.

3. Remove default sprites and add new ones from the
sprite library.

4. Implement basic coding blocks to manipulate sprite
movement.

5. Modify values within code blocks to alter sprite
behaviour.

6. Create a loop within the code to repeat specific
actions.

7. Add a backdrop from the library to enhance the visual
aspect of the project.

8. Explore and experiment with various code blocks to
diversify sprite actions.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 2

Week 2

Lesson: Paddle Ball Game

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating a Paddle Ball Game using Scratch. They'll learn to move sprites, change backdrops,
and use sensing blocks. They'll create a new Scratch project, add a paddle and a football sprite, position the ball, make it bounce,
control the paddle, make the ball bounce off the paddle, add a backdrop, add a game over line and program the game over.
Ensure students understand X and Y coordinates, and how to use the Scratch coding blocks.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using Scratch to create a simple game.

2. Understand and apply the concept of sprites and backdrops
in Scratch.

3. Learn to control sprite movements using mouse input.

4. Implement game logic using conditional statements in
Scratch.

5. Understand and apply the concept of X and Y coordinates to
position sprites.

1. Manipulate sprites and backdrops in Scratch.

2. Utilise X and Y coordinates to position sprites.

3. Implement code to control sprite movement and
interaction.

4. Use sensing blocks to detect sprite collision and
mouse position.

5. Create a game over condition using colour
detection.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 3

Week 3

Lesson: Racing Car

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson involves creating a racing car game using Scratch. Teachers should familiarise themselves with Scratch and its
features. The lesson starts with creating a new Scratch project and adding a car sprite. The car is then resized and a racing track
is drawn. The car is placed on the track and a speed variable is created. The car's location is detected and it is programmed to
move forwards, backwards, left, and right. Finally, students test drive their car. Teachers should ensure students understand
each step before moving on.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new
Scratch project.

2. Understand and apply the process of adding and
modifying sprites in Scratch.

3. Gain knowledge in drawing and editing backdrops
in Scratch.

4. Learn to create and manipulate variables to control
sprite properties.

5. Acquire skills in programming sprite movements
and interactions using Scratch blocks.

1. Develop a new Scratch project and remove the default sprite.

2. Upload a provided car sprite into the Scratch project.

3. Resize the car sprite to 10% of its original size using Scratch
code.

4. Draw a racing track using the backdrop editor in Scratch.

5. Position the car sprite on the track and code its starting
position and direction.

6. Create a 'speed' variable to control the car's speed.

7. Program the car to detect its location and adjust its speed
accordingly.

8. Code the car to move forwards and backwards using the up
and down arrow keys.

9. Code the car to turn left and right using the left and right
arrow keys.

10. Test drive the car using the programmed controls and
observe its speed changes on different surfaces.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 4

Week 4

Lesson: Red v Green v Blue

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students in creating a new Scratch project, focusing on creating and manipulating sprites. Students will create
a red dot sprite, then duplicate and recolour it to create green and blue versions. They will then learn to create a 'count' variable
and use it to clone the dot sprite 100 times. The clones will be coded to appear randomly on the screen, move around, and
'infect' each other, changing colours according to a set rule. Encourage students to think of ways to improve the project.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new
Scratch project.

2. Acquire knowledge in creating and modifying
sprites and costumes in Scratch.

3. Understand and apply the concept of variables in
Scratch programming.

4. Learn to code sprite clones and manage their
behaviour in Scratch.

5. Enhance problem-solving skills by improving and
customising the project.

1. Develop a new Scratch project and remove the default sprite.

2. Create a red dot sprite using the sprite editor.

3. Generate green and blue costumes for the sprite.

4. Create a 'count' variable for counting up to 100.

5. Code the sprite to clone itself 100 times using the 'count'
variable.

6. Programme each clone to randomly select a costume and
position, and then appear on the screen.

7. Code the dots to move in a random direction and bounce off
the screen edges.

8. Programme the dots to change colour when they touch
another dot, according to specific rules.

9. Improve the project based on personal ideas and creativity.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 5

Week 5

Lesson: Pattern Creator

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through an engaging exploration of pattern creation using Scratch. Familiarise yourself with the
Scratch interface and pen tool, as well as the process of creating a new project and adding sprites. Be ready to explain the use of
variables, loops, and how to manipulate pen colour and size. Encourage students to experiment with different degrees and pen
sizes to create unique patterns. Wrap up by reinforcing the importance of practice and creativity in mastering coding.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Master the use of Scratch for pattern creation.

2. Understand and apply the use of variables in creating
complex shapes and patterns.

3. Manipulate the pen tool to draw and create unique patterns.

4. Experiment with different degrees and pen sizes to alter
pattern outcomes.

5. Apply creativity in coding to produce vibrant and unique
patterns.

1. Code a Scratch project to create basic patterns
using the pen tool.

2. Implement the use of variables to manipulate
pattern creation.

3. Adjust pen colour and size to enhance pattern
design.

4. Utilise loops and conditional statements to control
pattern formation.

5. Experiment with different variable values to create
unique patterns.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 6

Week 6

Lesson: Attack of the Dots

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare for an interactive lesson where students will create a game using Scratch. They will learn to control a coloured disc,
clone attacking dots, and detect the colour of the dots. Ensure students understand how to remix a starter project, make the disc
spin, clone the ball, prevent the ball from appearing too close to the disc, make the ball move, detect the colour of the ball, create
purple and orange balls, and change the code for the purple and orange balls. Wrap up by congratulating students on their newly
acquired skills.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using Scratch to create an interactive
game.

2. Understand how to control a coloured disc using keyboard
inputs.

3. Learn to clone game elements and set their behaviour.

4. Master the technique of colour detection for game
mechanics.

5. Apply problem-solving skills to prevent game elements
from spawning too close to the player.

1. Master the use of Scratch to create an interactive
game.

2. Control a coloured disc using keyboard inputs.

3. Clone and manipulate game elements, such as
coloured dots, using Scratch code.

4. Implement colour detection to trigger game events.

5. Modify and customise game elements to enhance
gameplay.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 7

Week 7

Lesson: Autonomous Car

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through the process of understanding how autonomous cars work. Facilitate the creation of a Scratch
project where students will program their own autonomous car, incorporating elements such as car sprites, speed variables, and
sensor-driven navigation. Encourage students to experiment with different track designs and speeds, fostering a deeper
understanding of autonomous vehicle technology.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the concept and workings of an autonomous car.

2. Develop skills in creating a new Scratch project and
manipulating sprites.

3. Learn to use variables and conditional statements in Scratch to
control sprite movements.

4. Apply knowledge of sensors in programming an autonomous
car to navigate a track.

5. Enhance problem-solving skills by implementing speed control
and reverse functions in the autonomous car project.

1. Understand the functioning of an autonomous
car and its use of sensors for navigation.

2. Create a new Scratch project and manipulate
sprites and backdrops.

3. Program the car to move and navigate using
colour detection and conditional statements.

4. Control the speed of the car using variables and
keyboard inputs.

5. Implement a reverse function to correct the
car's course when it deviates from the track.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 8

Week 8

Lesson: Rocket Lander

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating a rocket landing game using Scratch. The lesson involves programming gravity,
controlling rocket movement, creating animations for rocket thrust and explosion, and adding a fuel limit for an extra challenge.
Ensure students understand the concept of variables and conditions in coding. Encourage creativity and problem-solving as they
experiment with their game.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the concept of vertical rocket
landing and its challenges.

2. Develop a game using Scratch, simulating a
rocket landing scenario.

3. Implement gravity and movement controls in
the game using code blocks.

4. Create and use costumes to animate rocket
thrust and explosion.

5. Introduce and manage a fuel limit for added
complexity in the game.

1. Understand and explain the functionality of the Space X Falcon
9 rocket.

2. Create a basic game in Scratch, including setting up a starter
project.

3. Program gravity and booster functions for a rocket sprite in
Scratch.

4. Design and implement visual effects such as rocket thrust and
explosion in Scratch.

5. Implement controls for rocket movement and landing, including
fuel limits and landing conditions.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Coding Concepts / Unit: Week 9

Week 9

Lesson: Project Showcase

● Advanced  90 mins  Teacher/Student led

For the 'Project Showcase' lesson, teachers should encourage students to brainstorm creatively and select a project idea they
are passionate about. Facilitate the planning phase, ensuring students consider the design and functionality of their projects.
Support students during the coding process, reminding them to refer to previous lessons if needed. Encourage testing and
debugging as part of the learning process. Finally, create a supportive environment for students to present their projects,
highlighting their achievements and challenges faced.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Generate and select creative project ideas.

2. Plan and design a project, identifying necessary
resources and steps.

3. Apply coding skills to create a unique project.

4. Test, debug, and refine the project to ensure
functionality.

5. Present the final project, explaining its workings
and discussing challenges faced.

1. Generate and select a creative project idea.

2. Formulate a detailed plan for the chosen project, including
visual design and required coding blocks.

3. Apply coding skills to execute the project plan, using previous
lessons as reference.

4. Perform testing and debugging to ensure the project
functions as intended.

5. Present the final project effectively, explaining its workings
and discussing faced challenges.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming

Module: Exploring Microbit Programming
This module will guide teachers through introducing students to the world of microbit programming.
Teachers will facilitate students in creating various projects, from a simple step counter to a voting
system. Each lesson provides hands-on experience with coding, fostering students' problem-solving and
critical thinking skills. Teachers should be prepared to assist with coding and troubleshooting, and
encourage students to experiment and explore the capabilities of microbits. The module culminates in a
showcase, allowing students to present their projects and reflect on their learning journey.

Duration Equipment

9 weeks Students can use any of these devices:

Chromebook/Laptop/PC

Required Equipment:

Microbit

Module Goals Module Outcomes

1. Master the basics of Microbit programming, including
creating projects, writing and deleting code, and
connecting Microbits to computers.

2. Develop practical applications of Microbit programming,
such as creating a step counter, a reaction timer game,
and a guessing game.

3. Understand and utilise the built-in features of Microbits,
such as the accelerometer, magnetometer, and
temperature sensor.

4. Apply Microbit programming skills to create interactive
games and systems, including a paddle ball game, a voting
system, and a 'Chase the Dot' game.

5. Present and showcase individual Microbit projects,
demonstrating a comprehensive understanding of Microbit
programming and its applications.

1. Program a microbit to display messages, react to
button presses, show icons, play melodies, and
respond to movement.

2. Develop a step counter using the microbit's
accelerometer, displaying the number of steps taken.

3. Create a reaction timer game using a microbit,
measuring reaction times to random visual prompts.

4. Design a 'Higher or Lower' game on a microbit,
programming button inputs and implementing game
logic.

5. Control a Scratch Paddle Ball game using a microbit,
manipulating the paddle by tilting the microbit.

6. Transform a microbit into a compass and
thermometer, programming the buttons to use the
built-in sensors.

7. Establish a voting system using multiple microbits,
programming them to cast votes, tally the votes, and
reset the system.

8. Develop a 'Chase the Dot' game on a microbit,
defining variables, creating and calling functions, and
using gestures to control movement.

9. Present a showcase of the microbit projects
developed throughout the course, demonstrating
proficiency in microbit programming.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 1

Week 1

Lesson: Exploring Microbits

● Beginner  60 mins  Teacher/Student led  Student Quiz

Prepare to introduce students to the world of microbits, a pocket-sized programmable computer. The lesson will involve creating
a new project on the MakeCode for microbit website, familiarising with the project editor, and writing code to display numbers,
names, and icons. Students will also learn to delete code, connect their microbits to their computers, and program their
microbits to play music. The lesson concludes with an exploration phase where students can experiment with different blocks
from the toolbox.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand the basic functionality and features of a
microbit.

2. Create a new project using the MakeCode for microbit
website.

3. Use the Project Editor to write and simulate code.

4. Program the microbit to display numbers and text on its
LED grid.

5. Program the microbit to respond to button presses with
specific actions.

1. Identify the functions and capabilities of a microbit.

2. Create a new project on the MakeCode for microbit
website.

3. Understand the layout and functions of the Project
Editor.

4. Write and execute code to display numbers and names
on the microbit.

5. Program the microbit to respond to button presses with
specific displays.

6. Connect and download code to an actual microbit
device.

7. Compose and program a melody to play on the microbit.

8. Explore and experiment with different coding blocks and
functions.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 2

Week 2

Lesson: Microbit Step Counter

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating a Microbit step counter. They'll start a new project on makecode.microbit.org, create
and set up a 'steps' variable, and use the accelerometer to detect steps. They'll write code to display the step count and send it
to their Microbit. After connecting a power source, they'll secure the Microbit to their person and start walking. They'll adjust the
code to count every step and resend the updated code to their Microbit. Caution them to be careful while walking with the
Microbit.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop a basic understanding of Microbit
programming and project creation.

2. Learn to create and set up variables in Microbit.

3. Understand the use of accelerometer sensor in
Microbit for step detection.

4. Gain skills to display data on Microbit using
LEDs.

5. Learn to modify and resend code to Microbit for
improved functionality.

1. Develop a new Microbit project using the
makecode.microbit.org website.

2. Create and set up a 'steps' variable to record the number of
steps taken.

3. Utilise the accelerometer sensor in Microbits to detect and
record steps.

4. Display the recorded number of steps on the Microbit using its
LEDs.

5. Modify the code to accurately count every step taken, and
resend the updated code to the Microbit.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 3

Week 3

Lesson: Reaction Timer

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students in creating a 'Reaction Timer' project using Micro:bit. They'll start by setting up a new project, then
create a welcome message and a countdown. Next, they'll add a random delay to make the game unpredictable. They'll create
variables to store time stamps, and finally, record the player's reaction time. Familiarise yourself with the code snippets
provided.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new project on
the Micro:bit platform.

2. Acquire knowledge on how to create and display
messages using code.

3. Understand and apply the concept of countdowns and
delays in programming.

4. Learn to create and utilise variables for storing time
stamps.

5. Gain proficiency in recording and displaying user
interactions in real-time.

1. Develop a new project using the Micro:bit website.

2. Construct a welcome message to display upon
powering on the Microbit.

3. Create a countdown sequence with visual cues using
code.

4. Implement a random delay function in the game for
unpredictability.

5. Create and utilise variables to store time stamps.

6. Record and display player reaction time upon button
press.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 4

Week 4

Lesson: Higher or Lower Game

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare for this lesson by familiarising yourself with the Microbit project creation process and the coding involved in creating
variables. Understand the game setup, including the use of random numbers and how they're displayed. Be prepared to explain
the game mechanics, such as guessing higher or lower, scoring points, and resetting numbers for the next round. Be ready to
guide students through the game over process and the steps to duplicate code for the 'higher' guess. Finally, ensure you know
how to download the game onto a Microbit for playing.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop skills in creating and manipulating
variables within a Microbit project.

2. Understand and apply the concept of random
number generation in game development.

3. Gain proficiency in programming button inputs to
trigger specific actions.

4. Learn to implement scoring systems and game
over conditions in a game project.

5. Enhance problem-solving skills by debugging and
testing a game on a Microbit device.

1. Create a new Microbit project and two variables for the
game.

2. Set up the start of the game with random numbers and
display the number on the Microbit.

3. Program the A button to guess if the next number is lower
and score a point if the guess is correct.

4. Reset the variables for the next round after a correct guess
and display the new number on the Microbit.

5. End the game if the guess is incorrect and display the final
score.

6. Program the B button to guess if the next number is higher,
following the same rules as the A button.

7. Download the game onto the Microbit and play it.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 5

Week 5

Lesson: Microbit Paddle Ball

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will create a Microbit Paddle Ball game using Scratch. They will learn to create a new project, add and
position sprites, and make the ball bounce around the screen. They will also connect a Microbit to control the paddle, make the
ball bounce off the paddle, add a backdrop, and create a game over line. The lesson concludes with programming the game over
functionality and discussing potential improvements to the game. Teachers should familiarise themselves with Scratch and
Microbit prior to the lesson.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop skills in creating and managing a new Scratch project.

2. Understand and apply the concept of adding and positioning
sprites in Scratch.

3. Gain proficiency in coding for sprite movement, interaction, and
control using Scratch blocks.

4. Learn to integrate and use a Microbit with Scratch for real-time
control of sprites.

5. Enhance critical thinking and problem-solving skills by
identifying potential improvements to the game.

1. Develop a new Scratch project and remove the
default cat sprite.

2. Add and position the 'Paddle' sprite from the
sprite library.

3. Add the 'Soccer Ball' sprite from the sprite
library.

4. Set the X and Y coordinates to position the ball
at the top center of the screen.

5. Code the ball to move around the screen and
bounce off the edges.

6. Connect and configure a Microbit to the Scratch
project.

7. Code the paddle to move left and right by tilting
the Microbit.

8. Program the ball to bounce off the paddle when
it touches it.

9. Add the 'Stars' backdrop from the backdrop
library.

10. Draw a red line at the bottom of the screen for
the game over line.

11. Code the game to end when the ball touches the
red game over line.

12. Propose improvements to the game by adding
to or changing the existing code.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 6

Week 6

Lesson: Microbit Compass and Thermometer

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students in creating a Microbit project that utilises the compass and temperature sensor. They will learn to
create and set variables, program buttons, and use 'if then else' blocks. The lesson involves coding the Microbit to display
cardinal directions based on its orientation and temperature readings. Students will also test their code using a simulator before
sending it to their Microbit. Ensure familiarity with the makecode.com platform and basic coding concepts.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and utilise the compass and temperature
sensor features of the Microbit.

2. Develop proficiency in creating and setting variables
in a Microbit project.

3. Apply conditional logic to program Microbit buttons
for specific functions.

4. Test and debug code using the simulator before
transferring to the Microbit.

5. Interpret and display data from the Microbit's sensors
in a user-friendly format.

1. Develop a new Microbit project using makecode.com.

2. Create and set a 'direction' variable to store compass
readings.

3. Program the A button to display compass direction (N, S,
E, W) based on 'direction' variable.

4. Program the B button to display the current temperature
reading.

5. Test and debug the code using the simulator and then
deploy it to the Microbit.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 7

Week 7

Lesson: Microbit Voting System

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students in creating a microbit voting system. They'll create two projects on the MakeCode Microbit website,
one for voting microbits and another for a central microbit. They'll program the A and B buttons to cast votes, set up the central
microbit to receive votes and reset the system, and display the vote results. They'll also enhance the system with a security
feature. Ensure students understand the coding involved and the importance of testing their system.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop a microbit voting system with separate
voting and central microbits.

2. Programme the voting microbits to cast a single 'Yes'
or 'No' vote.

3. Configure the central microbit to receive votes, count
them, and reset the voting system.

4. Implement a reset function on the voting microbits to
allow for multiple rounds of voting.

5. Enhance the voting system by adding a security
feature to ensure the integrity of the votes.

1. Develop two separate projects on the MakeCode Microbit
website for voting and central microbits.

2. Programme the A and B buttons on the microbit to cast a
single 'Yes' or 'No' vote.

3. Set up the central microbit to receive votes, count them,
and reset the voting system when needed.

4. Configure the individual voting microbits to receive the
'Reset' signal from the central microbit.

5. Display the vote results on the central microbit.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 8

Week 8

Lesson: Chase the Dot

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will create a game called 'Chase the Dot' using Microbit. They will learn to create a new project, define
variables, create a function, and use gestures to control movements. The game involves two dots, a target and a chaser. The aim
is for the chaser dot to catch the target dot, which moves to a random position each time it's caught. The lesson involves coding
for dot creation, movement, scoring, and game initiation.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop skills in creating and managing Microbit
projects on makecode.com.

2. Understand and apply the concept of variables in
coding to create game sprites.

3. Learn to create and use functions for repetitive tasks in
a game scenario.

4. Develop skills in using gestures to control game
elements in a Microbit project.

5. Understand and implement the concept of scoring and
round systems in game development.

1. Create and manipulate variables to store and control
game sprites in a Microbit project.

2. Develop a function to position a sprite at a random
location on the edge of the screen.

3. Implement a countdown timer and sound effects to
enhance game play.

4. Programme the Microbit to respond to tilt gestures to
control sprite movement.

5. Design a scoring system that responds to sprite
interactions and triggers new rounds of play.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Microbit Programming / Unit: Week 9

Week 9

Lesson: Microbit Showcase

● Advanced  60 mins  Teacher/Student led

Prepare students for a hands-on experience with Microbit, starting with project planning. Encourage them to brainstorm and
sketch their ideas. Guide them through the coding process, reminding them to test their code frequently. Assist them in
debugging, reinforcing that it's a normal part of coding. Finally, help them finalise their projects, ensuring their code is tidy and
they can articulate what their project does. If possible, facilitate downloading the project onto a Microbit device.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop a comprehensive plan for a Microbit project,
including sketching ideas and outlining necessary
steps.

2. Apply coding skills to create and test a Microbit
project, ensuring functionality and desired outcomes.

3. Identify and rectify errors in the code through effective
debugging techniques.

4. Finalise the project by ensuring clean, organised code
and providing a concise description of the project's
purpose and functionality.

5. Optional: Download and implement the project on a
Microbit device, demonstrating understanding of the
MakeCode editor.

1. Formulate a clear plan for a Microbit project, including a
sketch and step-by-step instructions.

2. Code a Microbit project using learned skills, with regular
testing to ensure functionality.

3. Debug the project code, identifying and rectifying errors
to ensure the project works as intended.

4. Finalise the project, ensuring the code is clean,
organised, and accompanied by a concise description of
the project and its functionality.

5. Optional: Download the completed project onto a
Microbit device using the MakeCode editor.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials

Module: Game Design Essentials
This module guides students through creating various interactive games using MakeCode Arcade. Each
week focuses on a different project, teaching students to design sprites, control movements, program
interactions, and set up game mechanics. Teachers should ensure students understand each step before
moving on, encourage experimentation with the code, and emphasise the importance of correct variable
selection and code placement. The module concludes with a game showcase, allowing students to
present their creations.

Duration Equipment

8 weeks Students can use any of these devices:

Chromebook/Laptop/PC

iPad/Tablet

Module Goals Module Outcomes

1. Master the use of MakeCode Arcade for game
design and development.

2. Develop skills in creating and controlling game
sprites, including player and AI-controlled
characters.

3. Understand and implement game mechanics such
as scoring, lives, collision effects, and game
outcomes.

4. Apply coding concepts to create interactive games
with different themes and mechanics.

5. Gain the ability to design, code, test, and refine a
variety of games, culminating in a final game
showcase.

1. Create and control game sprites using MakeCode Arcade.

2. Design and implement game mechanics such as movement,
collision detection, scoring, and game over conditions.

3. Understand and apply coding concepts to create interactive
games, including sprite overlaps, game logic, and variable
tracking.

4. Develop a variety of games including arcade, platform, and
battle arena games, demonstrating creativity and technical
skills.

5. Present a completed game project, demonstrating
understanding of game design principles and coding
concepts.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 1

Week 1

Lesson: First Arcade Project

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson guides students through creating their first arcade project using MakeCode Arcade. They will learn about the code
editor, how to create a new project, add a sprite, choose a sprite from the gallery, move the sprite, draw a tile map, draw walls,
make the camera follow the sprite, add projectiles, set their direction and speed, detect overlap, lose a life, and finally, send the
code to a handheld device. The lesson is hands-on and interactive, allowing students to learn by doing.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and utilise MakeCode
Arcade for creating games.

2. Manipulate the Code Editor to build and
modify game elements.

3. Create and customise sprites for use in
a game.

4. Develop a tile map and implement walls
for game navigation.

5. Implement game mechanics such as
projectiles, sprite movement, and life
count.

1. Understand the functions and features of MakeCode Arcade.

2. Use the MakeCode Arcade code editor to create a new project and add a
sprite.

3. Manipulate the sprite's movements using the direction buttons in the
simulator.

4. Create and edit a tile map, including drawing walls and setting the
camera to follow the sprite.

5. Design and implement projectiles, including setting their direction and
speed, and programming responses to overlaps with the player's sprite.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 2

Week 2

Lesson: Space Dodge

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating a 'Space Dodge' game using MakeCode Arcade. Students will learn to create a new
project, design a spaceship sprite, control the spaceship, set the number of lives, create asteroids, set their position and velocity,
auto destroy them when they move off the screen, and detect when an asteroid hits the spaceship. Ensure students understand
the importance of correct variable selection and the effect of different values in the code.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using MakeCode Arcade to
create a game.

2. Understand and apply the concept of sprites
in game development.

3. Implement controls for game characters
using code.

4. Apply the concept of randomisation in game
elements for varied gameplay.

5. Understand and implement game mechanics
such as collision detection and life count.

1. Design and create a spaceship sprite using MakeCode Arcade.

2. Control the spaceship's movement with arrow keys and set
boundaries to prevent it from going off the screen.

3. Set the number of lives for the spaceship.

4. Create and design asteroid sprites that appear at random
positions on the screen.

5. Set the velocity of the asteroids to make them move across the
screen.

6. Implement a function to auto-destroy asteroids when they move
off the screen.

7. Program the game to detect when an asteroid hits the spaceship,
causing it to lose a life and trigger a camera shake effect.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 3

Week 3

Lesson: Bat Battle

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson guides students through creating a game using MakeCode Arcade. They will learn to create and control a player
sprite, generate enemy sprites, and program interactions between them. The lesson includes coding for scoring points and
ending the game. Teachers should ensure students understand each step before moving on, and encourage experimentation
with the code to add new features to the game.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in using MakeCode Arcade to create an interactive game.

2. Understand how to create, control, and position player and enemy
sprites.

3. Learn to program game interactions such as shooting projectiles and
detecting overlaps.

4. Gain knowledge on how to keep score and end the game in MakeCode
Arcade.

5. Enhance problem-solving and debugging skills by experimenting with the
code and adding new features.

1. Create and control a player sprite in
MakeCode Arcade.

2. Generate enemy sprites at random
positions.

3. Program interactions between player
and enemy sprites.

4. Implement a scoring system for hitting
targets.

5. End the game when an enemy sprite
hits the player sprite.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 4

Week 4

Lesson: Space Shooter

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating a space-themed game using MakeCode Arcade. They will design a spaceship sprite,
control its movements, set the number of lives, create and program asteroids, fire rockets, destroy asteroids, and lose lives when
hit by an asteroid. Ensure students understand the importance of correct code placement and sprite selection. Encourage them
to test their game frequently to ensure it functions as expected.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop understanding of MakeCode Arcade
for game creation.

2. Gain proficiency in creating and controlling
game sprites.

3. Learn to implement game mechanics such as
scoring and lives.

4. Understand how to detect and respond to
sprite interactions.

5. Apply coding skills to create a complete Space
Shooter game.

1. Design and create a spaceship sprite in MakeCode Arcade.

2. Control the spaceship sprite using arrow keys and prevent it
from going off the screen.

3. Set the number of lives for the spaceship.

4. Create and program asteroids to fly in from the right side of the
screen.

5. Fire rockets from the spaceship when the A button is pressed.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 5

Week 5

Lesson: Platform Place

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating their first platform game using MakeCode Arcade. The lesson involves
understanding the basics of platform games, creating a new project, designing a sprite, programming sprite movements, adding
gravity, drawing a map with different elements, programming a jump function, testing the game, and adjusting the game's
mechanics. Ensure students understand the code snippets and their purpose in the game's functionality. Encourage creativity in
sprite and map design.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the basic concept and mechanics of platform
games.

2. Create and design a sprite character in a game environment.

3. Implement movement controls for the sprite character.

4. Apply the concept of gravity in a game setting.

5. Design and create a game map with different elements such
as ground, danger and goal tiles.

1. Understand the concept of platform games and
their mechanics.

2. Create a new project on arcade.makecode.com
and design a sprite character.

3. Implement sprite movement controls using code.

4. Apply the concept of gravity to a sprite in a
platform game.

5. Design a game map with ground, danger, and goal
tiles.

6. Program a sprite to jump and move through the
map.

7. Implement game mechanics such as danger tiles
and a goal tile.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 6

Week 6

Lesson: Dino Jump

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will create an interactive game called 'Dino Jump' using MakeCode Arcade. They will learn how to draw a
map, create a dino character, make it jump, add obstacles, keep score, and determine when the game is won. The lesson
involves creating a new arcade project, drawing the map, creating the dino sprite, adding gravity and movement to the dino,
making it jump, adding cactuses as obstacles, detecting collision with a tree, keeping score, and setting a win condition. The
lesson concludes with a play and review session.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in creating an interactive game
using MakeCode Arcade.

2. Understand how to draw a map, create a
character, and add movement and gravity
effects.

3. Learn to add obstacles and implement collision
detection for game over scenarios.

4. Gain knowledge on how to keep score and
determine winning conditions in a game.

5. Reflect on the game design process and the
elements involved in creating an engaging game.

1. Create a new arcade project on the MakeCode Arcade website.

2. Draw a map for the Dino Jump game, including ground tiles,
walls, and a finish tile.

3. Create a dino sprite using the sprite editor and code.

4. Implement gravity and movement for the dino sprite, making it
fall to the ground and move forwards through the map.

5. Program the A button to make the dino jump when it is
touching the ground.

6. Add trees to the map as obstacles for the dino to jump over.

7. Implement game over functionality when the dino sprite hits a
tree.

8. Keep score based on how long the player can go without
hitting a tree.

9. Detect when the player reaches the end of the game and
display a winning screen.

10. Play and review the Dino Jump game, reflecting on the
elements of game design learned during the lesson.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 7

Week 7

Lesson: Monster Battle Arena

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through creating a 'Monster Battle Arena' game using MakeCode Arcade. They will learn to create
player-controlled and AI-controlled sprites, implement combat mechanics, health systems, and AI behaviours. Students will also
learn to create a new project, design sprites, make the monster move, implement a health system, create a combat system, and
determine the winner. Encourage creativity and experimentation with the game's features.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop a player-controlled sprite and an AI-
controlled monster in a game using
MakeCode Arcade.

2. Create and manage a new project in
MakeCode Arcade.

3. Implement a health system for player and
monster sprites.

4. Develop a combat system where player and
monster sprites can inflict damage on each
other.

5. Implement a win/lose condition based on the
health of player and monster sprites.

1. Create and control a player sprite using MakeCode Arcade,
ensuring it moves smoothly within the screen boundaries.

2. Program an AI-controlled monster sprite with randomized
movement, simulating intelligent behavior.

3. Implement a health system that tracks and displays the health
values of both the player and the monster during the game.

4. Develop a combat system that reduces player health upon
collision with the monster and allows the player to shoot
projectiles at the monster.

5. Determine the game's winner by programming conditions that end
the game when either the player's or monster's health reaches
zero.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Game Design Essentials / Unit: Week 8

Week 8

Lesson: Donut Rush

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will create an interactive game called 'Donut Rush' using MakeCode Arcade. They will learn to write code
for creating game sprites, handling events like sprite overlaps, and controlling game logic. The lesson involves setting up the
game, creating a new project, and defining variables to track the game's state. Students will also learn to create a function, set
up the level, create the donuts, and start the game. They will add code to detect when the player sprite overlaps with a donut
sprite and to check if the player has collected the target number of donuts. The lesson concludes with a wrap-up and play
session.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop an understanding of
game creation using MakeCode
Arcade.

2. Learn to create and manage
variables in a gaming context.

3. Understand the concept and
application of functions in game
development.

4. Gain skills in handling events
such as sprite overlaps and
controlling game logic.

5. Apply knowledge to create an
interactive game with multiple
levels and scoring system.

1. Create a new project in MakeCode Arcade.

2. Set up the game by creating a splash screen, setting up variables, and creating
a player sprite.

3. Create a function called 'startLevel' to organise the game's code.

4. Set up the level by adding code to the 'startLevel' function, including setting the
background colour, displaying a level message, setting the target number of
donuts to collect, and starting a countdown.

5. Create multiple donuts using a loop and place them randomly on the screen.

6. Start the game by calling the 'startLevel' function.

7. Collect donuts by detecting when the player sprite overlaps with a donut sprite,
increasing the score, destroying the donut sprite, and playing a smile effect.

8. Complete the level by checking if the player has collected the target number of
donuts, increasing the level, playing a 'jump up' sound, and starting a new level.

9. Wrap up the game and play it, aiming to collect as many donuts as possible
within the time limit.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation

Module: Robotic Cars and Automation
This module delves into the fascinating world of robotics, starting with the basics of what a robot is, its
history, and its future. It then transitions into practical, hands-on lessons where students build and
program their own robotic cars using Microbits. Teachers should ensure students understand the
theoretical aspects before moving onto the practical components. Encourage creativity and problem-
solving as students navigate through building traffic lights, programming sensors, and even creating a
robot car claw. The module culminates in a Robot Showcase, where students can display their creations.

Duration Equipment

10 weeks Students can use any of these devices:

Chromebook/Laptop/PC

Required Equipment:

Microbit

Move Motor Car

Move Motor Klaw

Phillips Screwdriver

Traffic Lights Kit

Module Goals Module Outcomes

1. Understand the concept, history, and future of robotics and its
impact on society.

2. Develop practical skills in building and programming Microbit
Traffic Lights.

3. Acquire knowledge in constructing and programming a Move
Motor Sensor Car.

4. Learn to use sensors for line following, distance measurement,
and object navigation in robotic cars.

5. Gain proficiency in using a Microbit for remote control and
communication between traffic lights and an autonomous car.

1. Understand and explain the concept, history,
and future of robotics.

2. Construct and program traffic lights using a
Microbit.

3. Build and program a Move Motor Sensor Car
to follow lines and navigate around objects.

4. Utilise the accelerometer and radio in a
Microbit to remotely control the Move Motor
Car.

5. Assemble, attach, and program the Move
Motor Klaw to a Move Motor Car.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 1

Week 1

Lesson: What is a Robot?

● Beginner  20 mins  Teacher/Student led  Student Quiz

In this lesson, we will learn about robots - what they are, what they look like, what they can do, and how they work. We'll explore
different ways robots are used in different industries and environments. By the end of the lesson, we'll have a better
understanding of what robotics is and how robots are changing the world around us.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Learning Goals Learning Outcomes

Understand the basic definition and purpose
of a robot.

Identify different forms and appearances of
robots and understand why they are
designed in certain ways.

Recognize the various tasks that robots can
perform and how they assist in different
fields.

Comprehend the basic components of a
robot and how they function together to
perform tasks.

Identify different environments where robots
are used and understand their role in these
settings.

Appreciate the importance of robots in our
society and how they contribute to efficiency,
safety, and exploration.

By the end of the lesson, students will be able to define what a
robot is and describe its basic components such as sensors,
motors, and controllers.

Students will be able to identify and describe different forms of
robots, from humanoid to animal-inspired, and simple to complex
designs.

Students will be able to explain the various tasks that robots can
perform, from assisting humans in daily tasks to being used in
scientific research or exploration.

Students will be able to explain how robots work, including how
they use sensors to interact with their environment and make
decisions.

Students will be able to identify and discuss the various
environments where robots are used, including factories, hospitals,
homes, and outer space.

Students will be able to articulate the importance of robots in
society, including their role in increasing efficiency and productivity
in various industries.

Lesson: History of robotics

● Beginner  20 mins  Teacher/Student led  Student Quiz

In this lesson, we'll learn about the history of robotics, from the earliest mechanical devices to modern robots equipped with
advanced sensors and artificial intelligence. We'll explore the impact of robotics on society and the future of this exciting field.
By the end of the lesson, we'll have a better understanding of how robotics has changed the way we live and work.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Learning Goals Learning Outcomes

Understand the historical development of
robotics from ancient times to the present
day.

Identify key milestones and innovations in the
history of robotics.

Recognize the impact of the Industrial
Revolution on the development of robotics.

Appreciate the advancements in technology
that have led to the modern robots we see
today.

Analyze the impact of robotics on society,
including the ethical considerations it raises.

Consider the potential future developments in
robotics and their implications for society.

Students will be able to trace the history of robotics from its
earliest origins to the present day.

Students will be able to identify and describe the key
developments in robotics during the Industrial Revolution.

Students will be able to explain the concept of a robot and
identify the characteristics of early robots.

Students will be able to discuss the advancements in robotics
technology, including the role of artificial intelligence and
sensors.

Students will be able to analyze the impact of robotics on society,
including its benefits, risks, and ethical implications.

Students will be able to predict future trends in robotics and
discuss their potential societal implications.

Lesson: Future of robotics

● Beginner  20 mins  Teacher/Student led  Student Quiz

In this lesson, we'll explore the exciting possibilities of the future of robotics. We'll learn about advancements in artificial
intelligence, the promise of human-robot collaboration, and biologically inspired designs. We'll also consider the role of robots in
space exploration and ethical considerations related to their use. By the end of the lesson, we'll have a better understanding of
how robots will continue to transform the way we live and work in the future.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Learning Goals Learning Outcomes

Understand the role of artificial intelligence in the
future of robotics and how it enables robots to
learn, adapt, and make decisions.

Appreciate the concept of human-robot
collaboration and how it can enhance our daily
tasks and overall quality of life.

Recognize the principles of biologically inspired
robotics and how nature influences the design and
functionality of robots.

Understand the significance of robotics in space
exploration and how it expands our understanding
of the universe.

Identify the ethical considerations surrounding the
use of robots and the need for responsible use and
regulation.

Reflect on the potential impact of advancements in
robotics on personal life and society as a whole.

Upon completion of this lesson, students will be able to
identify and explain the role of Artificial Intelligence in the
future of robotics.

Students will be able to conceptualize and describe how
human-robot collaboration can enhance daily tasks and
improve safety.

Students will understand and discuss the concept of
biologically inspired robotics and provide examples of its
application.

Students will be able to explain the role of robots in space
exploration and the advantages they offer over human
explorers.

Students will be able to articulate ethical considerations
related to the increased use of robots in society and propose
potential solutions to these issues.

Upon reflection, students will be able to predict potential
opportunities and challenges that the future of robotics may
present to society.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 2

Week 2

Lesson: Build your Traffic Lights

● Beginner  10 mins  Teacher/Student led  Student Quiz

Ensure students have all necessary materials, including the Microbit Traffic Lights Kit, a Microbit, and a Phillips head
screwdriver. Guide them through opening the package and assembling the stand. Assist them in correctly positioning the
Microbit on the traffic lights, ensuring they align the holes correctly. Supervise as they use the screwdriver to secure the
Microbit. Celebrate their accomplishment once completed.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Traffic Lights Kit

Phillips Screwdriver

Learning Goals Learning Outcomes

1. Identify and gather necessary components for the
Microbit Traffic Lights Kit.

2. Understand and execute the process of unpacking and
preparing the kit.

3. Develop skills in assembling the stand for the traffic
lights.

4. Apply knowledge of Microbit to correctly align and attach
it to the traffic lights.

5. Demonstrate the ability to follow step-by-step
instructions to complete a technical task.

1. Identify and gather necessary components for the
Microbit Traffic Lights Kit.

2. Unpack and organise the Microbit Traffic Lights
package contents.

3. Assemble the stand from the provided parts in the kit.

4. Align and attach the Microbit to the traffic lights using
the correct hole configuration.

5. Successfully complete the assembly of the Microbit
Traffic Lights.

Lesson: Microbit Traffic Lights

● Beginner  40 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will create a new Microbit project on makecode.com, add the Stopbit extension, and test all the lights.
They will learn about sequences in coding and apply this knowledge to program a traffic light sequence using on/off and state
methods. Students will need to check the correct display of lights in each sequence.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Traffic Lights Kit

Learning Goals Learning Outcomes

1. Understand and apply the process of creating a new Microbit
project.

2. Learn to add and utilise the Stopbit extension for
programming traffic lights kit.

3. Gain skills in testing and troubleshooting the functionality of
the lights.

4. Comprehend the concept of 'sequence' in coding and apply it
to program traffic lights.

5. Develop proficiency in programming the sequence of traffic
lights using on/off and state methods.

1. Create and manage a new Microbit project on
makecode.com.

2. Add and utilise the "stopbit" extension to the
Microbit project.

3. Test and troubleshoot the functionality of each
light on the Microbit.

4. Understand and apply the concept of 'sequence' in
coding to program traffic lights.

5. Program the sequence of traffic lights using on/off
and state methods.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 3

Week 3

Lesson: Build your Move Motor Sensor Car

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Ensure all materials are ready, including the Microbit and 4 AA batteries. Guide students through the step-by-step instructions
provided in the yellow booklet, ensuring they understand each stage of assembly, connection to Makecode, and adding the Move
Motor Extension. Facilitate their understanding of coding the motors, using the buzzer, Zip LEDs, line following sensors, and the
distance sensor. Encourage exploration and experimentation once the Move Motor Sensor Car is built.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Learning Goals Learning Outcomes

1. Develop practical skills in assembling a Move Motor
Sensor Car.

2. Understand how to connect the Move Motor Sensor Car to
Makecode.

3. Acquire coding skills for controlling the motors, buzzer,
and LEDs of the Move Motor Sensor Car.

4. Learn to utilise the line following and distance sensors for
navigation.

5. Encourage exploration and creativity in coding for
different movements and LED usage.

1. Identify and organise components of the Move Motor
Sensor Car kit.

2. Assemble the Move Motor Sensor Car following the
provided instructions.

3. Connect the assembled car to Makecode and add the
Move Motor Extension.

4. Code the motors, buzzer, Zip LEDs, line following
sensors, and distance sensor of the car.

5. Apply learned skills to explore and create new
movements and LED patterns.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 4

Week 4

Lesson: Line Following Car

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will program a Move Motor Car to follow a line track using a Microbit. They will create a new project on
the MakeCode website, add the kitronik-move-motor extension, and create variables for the left and right line sensors and their
difference. Students will then program the car to turn right, left, and move forward based on these sensor readings. After testing
their code on a track, students can tweak the code to improve the car's speed and performance on more complex tracks.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Learning Goals Learning Outcomes

1. Understand and apply the concept of
programming a Microbit to control a Move Motor
Car.

2. Create and manipulate variables to store sensor
values and control the car's movements.

3. Implement conditional logic to guide the car's
movements based on sensor readings.

4. Use LEDs for visual feedback and enhance the
functionality of the car.

5. Experiment with code modifications to optimise
the car's performance on different tracks.

1. Programme the Move Motor Car to follow a line track using a
Microbit.

2. Create a new project on the https://makecode.microbit.org
website.

3. Add the kitronik-move-motor extension to the project and
utilise the custom blocks to program the Move Motor car.

4. Create and utilise variables to store values of the left and right
line sensors and their difference.

5. Set up the LEDs on the Move Motor car to light up different
colours depending on the car's direction.

6. Programme the car to turn right when the left sensor reads a
higher darker value than the right sensor.

7. Programme the car to turn left when the right sensor reads a
higher darker value than the left sensor.

8. Programme the car to move forwards when the left and right
sensors have similar readings.

9. Test the programmed car on a track and observe its
autonomous driving.

10. Tweak the code to improve the car's speed and performance
on different tracks.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 5

Week 5

Lesson: Move Motor Measure

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson involves using a sonar sensor on a Move Motor car to measure distances and transmit the data to another Microbit.
Students will learn how an ultrasonic sensor works and how to program two Microbits to communicate with each other. They
will need to add specific extensions to their project, set units and radio groups, and create code to measure and display
distances. The lesson requires hands-on work with Microbits and the Move Motor car, and also includes online coding using the
makecode.microbit.org website.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Learning Goals Learning Outcomes

1. Understand the function and operation
of an ultrasonic sensor.

2. Develop proficiency in programming
Microbits for specific tasks.

3. Gain skills in using radio groups for
communication between Microbits.

4. Learn to measure distances using an
ultrasonic sensor and a Microbit.

5. Acquire the ability to display
measurements on a separate Microbit.

1. Understand and explain the function of an ultrasonic sensor and how it
measures distance.

2. Program the Microbit inside the Move Motor car to measure distances
and send the measurements to another Microbit.

3. Add necessary extensions to the project and set the units for
measurement.

4. Program the second Microbit to send a "measure" message and
display the received measurement.

5. Successfully test the functionality of the system by measuring and
displaying distances.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 6

Week 6

Lesson: Car Distance Sensors

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to introduce students to the concept of ultrasonic sensors and how they function. Guide them through creating a new
project on the MakeCode website, adding the kitronik-move-motor extension. Assist them in programming the sensor to
measure distance and display it on the Microbit. Progress to programming the car to maintain a 10cm distance from an object,
including reversing. Finally, challenge students to improve the code, adding lights and randomised movement to enhance the
car's obstacle avoidance.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Learning Goals Learning Outcomes

1. Understand the function and operation of
ultrasonic sensors.

2. Develop skills in creating a new project using
the kitronik-move-motor extension.

3. Acquire the ability to program a sensor to
measure distance.

4. Learn to code a car to maintain a specific
distance from an object.

5. Enhance problem-solving skills by
programming the car to reverse and maintain
distance.

1. Understand the function and operation of an ultrasonic sensor.

2. Create a new project on the MakeCode Microbit website and add
the necessary extension.

3. Program the sensor to measure and display the distance to an
object.

4. Modify the code to make the car maintain a distance of 10cm from
an object.

5. Enhance the code to reverse the car until it is exactly 10cm away
from an object.

6. Program the car to free roam and avoid objects by stopping,
reversing, and turning right when an object is detected within
10cm.

7. Improve the code for better navigation and add lights for visual
feedback.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 7

Week 7

Lesson: Tilt Remote Control Car

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will learn to control a Move Motor car using a Microbit as a remote controller. They will create two code
projects: one for the remote control and another for the car. The lesson involves programming the Microbit to detect tilts in
different directions and send corresponding messages to the car. The students will also add code to stop the car and to light up
the LEDs on the car in different colours. Ensure each remote and car set uses a different radio group to avoid crossed signals.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Learning Goals Learning Outcomes

1. Understand and apply the concept of radio
communication between two Microbits.

2. Programme a Microbit to send specific messages
based on different gestures.

3. Develop the ability to programme a Move Motor car
to respond to different messages received.

4. Test and debug the code to ensure the car responds
correctly to the remote control.

5. Extend the project by adding additional features
such as LED light changes.

1. Programme a Microbit as a remote control to send
directional commands.

2. Programme a Microbit to receive and execute directional
commands in a Move Motor car.

3. Test and debug the code to ensure correct functioning of
the remote-controlled car.

4. Download and implement the code onto the Microbits.

5. Extend the code to include LED light changes in response to
different commands as an additional challenge.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 8

Week 8

Lesson: Traffic Lights and Car Communication

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson involves coding a set of traffic lights and a robot car using Microbits. Students will program the traffic lights to
display a sequence and broadcast the light being shown. The robot car will receive this broadcast and decide whether to stop or
go. The lesson involves creating two code projects, adding a 'stopbit' extension, programming a sequence, broadcasting the
state, programming the car, receiving the message, downloading the code, and an additional challenge. Teachers should ensure
they have the necessary equipment and familiarise themselves with the coding platforms used.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Traffic Lights Kit

Move Motor Car

Learning Goals Learning Outcomes

1. Understand and apply the concept of radio
communication between Microbits.

2. Program a sequence of traffic light signals using code
blocks.

3. Develop skills to broadcast and receive specific
messages based on traffic light states.

4. Control the movement of a robot car based on received
messages.

5. Enhance problem-solving skills by modifying the code to
respond based on the proximity of the car to the traffic
lights.

1. Code a set of traffic lights to run through a sequence
and broadcast the displayed light.

2. Program a robot car to receive the broadcast and
decide whether to stop or go based on the traffic light
signal.

3. Use the "stopbit" extension to create custom code
blocks for programming the traffic lights kit.

4. Program the car to move at different speeds or stop,
depending on the received message from the traffic
lights.

5. Modify the code to make the car respond to the traffic
lights based on its proximity to them.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Robotic Cars and Automation / Unit: Week 9

Week 9

Lesson: Attach the Move Motor Klaw

● Advanced  30 mins  Teacher/Student led  Student Quiz

Ensure to guide students in seeking adult assistance for the complex parts of constructing the Move Motor Sensor Car.
Facilitate the unpacking process, ensuring all necessary items are present. Lastly, guide students through the instruction
booklet, assisting them in attaching the Move Motor Klaw to the car, either vertically or horizontally.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Phillips Screwdriver

Move Motor Klaw

Learning Goals Learning Outcomes

1. Develop the ability to follow complex instructions with adult
supervision.

2. Understand the process of unpacking and organising
components for assembly.

3. Gain practical skills in using tools such as a small Phillips
head screwdriver.

4. Learn to assemble the Move Motor Klaw and attach it to
the Move Motor Car.

5. Understand the flexibility of design in attaching the Klaw
either vertically or horizontally.

1. Identify and gather necessary components for
building the Move Motor Klaw.

2. Correctly open the package and organise its
contents.

3. Follow the provided instructions to assemble the
Move Motor Klaw.

4. Successfully attach the Move Motor Klaw to the
Move Motor Car.

5. Demonstrate safe and effective use of tools during
assembly.

Lesson: Robot Car Claw

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Ensure you have a Move Motor Car with a Move Motor Klaw and a Microbit before starting. Create a new project on the Microbit
website and add the kitronik-move-motor extension. Understand how servos work and how they control the claw's pinchers.
Program the claw to close and open using specific codes and test these functions. Create a variable to vary the amount the claw
closes and re-program the buttons to gradually open and close the claw. Encourage students to explore other programming
possibilities with the claw.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Move Motor Car

Move Motor Klaw

Learning Goals Learning Outcomes

1. Understand the setup and requirements for a Move Motor
Car with a Move Motor Klaw and a Microbit.

2. Develop skills in creating a new Microbit project using the
provided website.

3. Gain knowledge about the kitronik-move-motor extension
and how to add it to the project.

4. Comprehend the functioning of servos and their application
in controlling the Move Motor Klaw.

5. Acquire the ability to program the claw to open and close
using specific code blocks.

1. Assemble a Move Motor Car with a Move Motor
Klaw and a Microbit.

2. Create a new Microbit project on the specified
website.

3. Add the kitronik-move-motor extension to the
project.

4. Understand the function and operation of a servo in
the Move Motor Klaw.

5. Program the claw to close and open using specific
code blocks and test its functionality.

6. Modify the code to allow the claw to open and close
gradually.

7. Explore other potential programming and usage
possibilities for the claw.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design

Module: Exploring Digital Art and Design
This module delves into the fascinating world of digital art and design. Teachers will guide students
through the history and impact of digital art, the software and tools used in its creation, and the basics of
software navigation. The module also covers the different types of brushes and tools, creating basic
shapes, experimenting with brush strokes and effects, and an introduction to colour theory. The module
concludes with a digital art showcase. Teachers should prepare by familiarising themselves with The
module content and encouraging student participation and creativity throughout.

Duration Equipment

7 weeks Students can use any of these devices:

Chromebook/Laptop/PC

iPad/Tablet

Module Goals Module Outcomes

1. Develop an understanding of the history, forms, and
impact of digital art.

2. Gain familiarity with various digital art software and
tools, and their unique functions.

3. Master the basics of navigating and using the
interface of digital art software.

4. Understand the different types of brushes and tools
used in digital art and their effective application.

5. Apply the principles of color theory in the creation
of digital art.

1. Identify the key characteristics and history of digital art, and
discuss its impact on creativity.

2. Understand and describe the functions of various digital art
software and tools.

3. Navigate and use the interface of digital art software
efficiently, with a focus on Photopea.

4. Differentiate between various types of brushes and tools in
digital art, and use them effectively in creating artwork.

5. Create basic shapes using digital art software and
understand their role as the building blocks of artwork.

6. Experiment with different brush strokes and effects to
create unique digital art pieces.

7. Understand the fundamental principles of colour theory and
apply them effectively in digital art.

8. Present a digital art piece, demonstrating the skills and
knowledge acquired throughout the course.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 1

Week 1

Lesson: Introduction to Digital Art

● Beginner  30 mins  Teacher/Student led  Student Quiz

Prepare to explain the concept of digital art, emphasising its basis in creativity and self-expression. Familiarise yourself with the
history of digital art, from its inception in the 1950s to its current status. Highlight key developments and their impact on the art
world. Discuss how digital art has expanded creative possibilities, enabling artists to experiment with new techniques and reach
global audiences. Highlight the collaborative potential of digital art, particularly in virtual and augmented reality.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the concept and scope of digital art.

2. Trace the historical development of digital art.

3. Recognise the impact of digital art on creativity and
artistic expression.

4. Appreciate the role of technology in shaping and
expanding the art world.

5. Identify the potential of digital art in collaborative
and global art projects.

1. Define digital art and its various forms.

2. Trace the historical development of digital art from the
1950s to the present day.

3. Identify the impact of technology on the evolution of digital
art.

4. Understand how digital art has expanded the avenues for
creativity and expression.

5. Recognise the role of digital art in global art sharing and
collaboration.

Lesson: Overview of digital art software and tools

● Beginner  30 mins  Teacher/Student led  Student Quiz

Prepare to introduce students to the world of digital art, its forms, and the software used to create it. Familiarise yourself with
popular digital art software like Adobe Photoshop, Procreate, Photopea, and Corel Painter. Understand the difference between
raster and vector software. Discuss the importance of digital art tools like drawing tablets, stylus pens, and computer mice.
Explain the benefits of drawing tablets in digital art and the different types of stylus pen tips. Finally, discuss the various file
formats for saving digital art.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the concept and types of digital art
including digital paintings, illustrations, animations,
and graphic design.

2. Identify and differentiate between popular digital art
software such as Adobe Photoshop, Procreate,
Photopea, and Corel Painter.

3. Understand the difference between raster and vector
software and their respective applications.

4. Recognise the role and functionality of digital art tools
including drawing tablets, stylus pens, and computer
mice.

5. Understand the benefits of using drawing tablets and
stylus pens, including their different tips, in creating
digital art.

6. Identify common file formats for digital art and
understand their specific uses and characteristics.

1. Identify and describe the key features of popular digital
art software such as Adobe Photoshop, Procreate,
Photopea, and Corel Painter.

2. Differentiate between raster and vector software, and
identify their respective uses in digital art creation.

3. Recognise and explain the function of digital art tools
including drawing tablets, stylus pens, and computer
mice.

4. Understand the benefits and working of drawing tablets
in digital art, including their pressure sensitivity and
efficiency.

5. Identify different types of stylus pen tips and their uses in
creating various effects on the digital canvas.

6. Understand and differentiate between common file
formats for digital art, including JPEG, PNG, and PSD, and
their respective uses.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 2

Week 2

Lesson: Basic Navigation and Interface

● Beginner  45 mins  Teacher/Student led  Student Quiz

This lesson will guide students through the basics of digital art software navigation and interface. Teachers should familiarise
themselves with the Photopea software in advance. The lesson covers understanding the interface, creating a new project, and
introduces navigation tools. Students will get hands-on experience using the paint, zoom, hand, and rotation tools, and will learn
about the layers panel. The lesson concludes with an introduction to basic features such as brush settings, colour picker, layers,
and selection tools, followed by practice exercises.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Grasp the structure and functionality of a digital art
software interface.

2. Initiate a new project using Photopea.

3. Master the use of essential navigation tools within the
software.

4. Apply basic tools such as the Paint, Zoom, Hand, and
Rotation tools effectively.

5. Utilise the Layers Panel for efficient management and
modification of artwork.

6. Understand and apply basic features including brush
settings, the colour picker, layers, and selection tools.

7. Develop practical skills through exercises using these
basic features.

1. Identify and describe the layout and design of a digital
art software interface.

2. Create a new project using Photopea digital software.

3. Utilise essential navigation tools to move around the
canvas and access different features.

4. Apply the Paint, Zoom, Hand, and Rotation tools in a
digital art software.

5. Manipulate the Layers Panel to work on different parts
of artwork independently.

6. Understand and use basic features such as brush
settings, the colour picker, layers, and selection tools.

7. Perform practice exercises to improve proficiency in
using digital art software.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 3

Week 3

Lesson: Understanding the Different Types of Brushes and Tools

● Intermediate  45 mins  Teacher/Student led  Student Quiz

Prepare to guide students through the world of digital art, focusing on the different types of brushes and tools available in digital
art software. Start with an introduction to digital art and its tools, then delve into the specifics of brushes and tools, explaining
their unique features and uses. Encourage students to experiment with these tools, blending colours, creating different line
widths and using negative space. Finally, task them with creating their own artwork using the discussed brushes and tools,
encouraging peer feedback and appreciation.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Identify and describe the different types of
brushes used in digital art.

2. Identify and describe the different types of
tools used in digital art.

3. Understand the specific uses and effects of
each brush and tool.

4. Apply knowledge of brushes and tools in
practical exercises.

5. Create original artwork using a variety of
brushes and tools.

1. Identify and differentiate between various types of brushes used
in digital art software.

2. Recognise and distinguish between different tools available in
digital art software.

3. Understand and apply the specific uses of each brush and tool in
digital art creation.

4. Experiment with different combinations of brushes and tools to
create unique effects in artwork.

5. Create a piece of digital artwork utilising the learned brushes and
tools effectively.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 4

Week 4

Lesson: Creating basic shapes

● Intermediate  60 mins  Teacher/Student led  Student Quiz

For this lesson, teachers should familiarise themselves with the basic shape tools in Photopea, including the rectangle, ellipse,
and polygon tools. They should also understand how to create perfect circles, squares, rectangles, and triangles using these
tools. Additional shape tools and their uses should be explored. Teachers should prepare some fun projects for students to
practice their skills, such as creating digital art pieces, designing website layouts, or creating infographics.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the role and importance of shapes in
digital art.

2. Identify and utilise basic shape tools in
Photopea.

3. Create perfect circles, squares, rectangles, and
triangles using Photopea.

4. Explore additional shape tools and their
applications in Photopea.

5. Apply learned skills to create unique designs and
graphics in fun projects.

1. Identify and utilise various basic shape tools in Photopea.

2. Create a perfect circle using the Ellipse Tool in Photopea.

3. Formulate a square or rectangle using the Rectangle Tool in
Photopea.

4. Construct a triangle using the Polygon Tool in Photopea.

5. Apply additional shape tools and features in Photopea to
create complex shapes and designs.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 5

Week 5

Lesson: Experimenting with Different Brush Strokes and Effects

● Intermediate  45 mins  Teacher/Student led  Student Quiz

For this lesson, ensure familiarity with different types of digital art brushes and their effects. Prepare to demonstrate various
brush strokes and techniques, adjusting brush settings for unique effects. Encourage students to experiment with these
techniques in creating their own digital art piece. Be ready to guide them through saving their artwork correctly. Finally,
emphasise the importance of regular practice, taking on challenges, seeking feedback, and learning from others to improve their
digital art skills.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the characteristics and capabilities of different
brush types and effects in digital art.

2. Master various brush strokes and techniques to create
diverse effects and textures.

3. Apply basic and advanced brush settings to manipulate the
behaviour of brushes and create complex effects.

4. Create a unique digital art piece using a variety of brushes,
strokes, and techniques.

5. Develop strategies for continuous practice and improvement
in digital art creation.

1. Identify and describe different types of digital art
brushes and their effects.

2. Apply various brush strokes and techniques to
create different effects in digital art.

3. Utilise basic and advanced brush settings to
manipulate the behaviour of digital brushes.

4. Create a digital art piece using a variety of
brushes, strokes, and effects.

5. Save digital artwork effectively and practice
techniques for continuous improvement.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 6

Week 6

Lesson: Introduction to Color Theory

● Intermediate  40 mins  Teacher/Student led  Student Quiz

Prepare to introduce students to the fundamentals of colour theory, starting with the colour wheel and primary, secondary, and
tertiary colours. Discuss complementary and analogous colour schemes, and the concepts of hue, saturation, and brightness.
Demonstrate how to adjust these properties in Photopea. Explain the role of contrast in digital art, and how to achieve high and
low contrast. Finally, guide students in applying colour theory to their own digital art.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the basic principles of color theory, including the color
wheel and the primary, secondary, and tertiary colors.

2. Recognise and apply complementary and analogous color schemes in
artwork.

3. Comprehend and manipulate hue, saturation, and brightness in digital
art.

4. Apply high and low contrast techniques to create visual interest in
digital art.

5. Integrate color theory principles into digital art to create harmonious
and visually appealing designs.

1. Identify primary, secondary, and tertiary
colours on the colour wheel.

2. Distinguish between complementary
and analogous colour schemes.

3. Define and differentiate hue, saturation,
and brightness in digital art.

4. Adjust hue, saturation, and brightness in
Photopea.

5. Apply high and low contrast techniques
in digital art.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 7

Week 7

Lesson: Using Color in Digital Art

● Intermediate  45 mins  Teacher/Student led  Student Quiz

Prepare to guide students through understanding various colour schemes and their impact on digital art. Ensure familiarity with
monochromatic, analogous, complementary, and triadic schemes. Discuss how colour influences mood and emotions in art.
Demonstrate application of colour in digital art using software like Adobe Photoshop or Procreate. Discuss techniques for
effective colour application and tips for choosing the right colour palette. Encourage students to consider the context and
purpose of their artwork when selecting colours.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and apply different colour schemes in
digital art: monochromatic, analogous,
complementary, and triadic.

2. Use monochromatic colour schemes to create depth
and dimension in artwork.

3. Apply analogous colour schemes to create a natural
and cohesive look in artwork.

4. Utilise complementary colour schemes to create high
contrast and dynamic effects in artwork.

5. Implement triadic colour schemes to create vibrant
and balanced effects in artwork.

6. Recognise the impact of colour on the mood and
emotions of an artwork and use it effectively.

7. Apply colour in digital art using software tools and
techniques.

8. Use different techniques for applying colour
effectively in digital art, including contrast, depth, and
directing viewer's attention.

9. Select the right colour palette for artwork considering
the context, purpose, and desired message or story.

1. Identify and describe the four main types of colour
schemes used in art and design.

2. Apply a monochromatic colour scheme in digital art to
create a calm and peaceful atmosphere.

3. Use an analogous colour scheme in digital art to create a
natural and cohesive look.

4. Implement a complementary colour scheme in digital art
for a high contrast and dynamic effect.

5. Apply a triadic colour scheme in digital art for a vibrant
and balanced effect.

6. Use colour to influence and convey mood and emotions
in digital art.

7. Apply colour in digital art using software tools and adjust
colour balance, hue, saturation, and brightness to achieve
the desired effect.

8. Use different techniques for applying colour effectively in
digital art, including using light and dark values for
contrast and depth.

9. Select the right colour palette for digital art based on the
context and purpose of the artwork.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Exploring Digital Art and Design / Unit: Week 8

Week 8

Lesson: Digital Art Showcase

● Advanced  60 mins

Prepare for a digital art showcase, guiding students through brainstorming, tool selection, creation, refinement, and presentation
of their artwork. Encourage creativity, patience, and regular saving of work. Promote critical evaluation and adjustments,
fostering a willingness to experiment. Finally, ensure students feel proud to share their creations, either in class or on social
media.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop a concept and plan for a digital art piece.

2. Select appropriate digital art software and tools to create
desired effects.

3. Create a digital art piece, demonstrating patience and attention
to detail.

4. Review and refine the digital artwork, demonstrating a
willingness to experiment and improve.

5. Present the final artwork in a public setting, demonstrating
confidence and pride in personal creativity.

1. Generate and articulate creative ideas for a
digital art piece.

2. Select appropriate digital art software and tools
to achieve desired effects.

3. Create a digital artwork, demonstrating patience
and regular saving habits.

4. Review and refine digital artwork, showing
willingness to experiment and adjust.

5. Present final digital artwork to peers or on social
media platforms.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics

Module: Web Design Basics
This module introduces students to the basics of web design, starting with HTML and progressing to CSS.
Teachers should ensure students understand the structure of a web page and the role of HTML elements.
Encourage hands-on practice and experimentation with code. As The module progresses, students will
learn to create complex tables, forms, and embed multimedia elements. The final modules introduce CSS,
covering text and font styling, the box model, and website layout. Teachers should reinforce learning with
practical exercises and real-world examples.

Duration Equipment

9 weeks Students can use any of these devices:

Chromebook/Laptop/PC

iPad/Tablet

Module Goals Module Outcomes

1. Understand and apply basic HTML elements to
create structured web pages.

2. Design and implement complex HTML tables
and lists.

3. Create interactive forms using basic and
advanced HTML input types.

4. Embed multimedia elements into web pages
using HTML5.

5. Utilise CSS for styling web pages,
manipulating text and fonts, and creating
website layouts.

1. Understand and apply basic HTML elements such as headings,
paragraphs, breaks, images, and links to structure a webpage.

2. Create and manipulate complex HTML tables using advanced
features like rowspan and colspan.

3. Design and code interactive forms using HTML elements like
<input>, <label>, and <button> and apply advanced input types.

4. Embed audio and video files into web pages using HTML5
multimedia elements.

5. Utilise CSS to style web pages, including text and fonts, and
create a basic website layout.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 1

Week 1

Lesson: Introduction to HTML

● Beginner  35 mins  Teacher/Student led  Student Quiz

Prepare to introduce HTML as the standard markup language for creating web pages. Explain the structure of a web page.
Discuss HTML elements, their start tags, content, and end tags. Highlight how web browsers interpret HTML code to display
web pages. Facilitate hands-on practice with writing basic HTML code and adding content. Encourage students to experiment
with their own details.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the purpose and structure of HTML in web
development.

2. Identify and describe the key components of a web page
structure.

3. Recognise and use basic HTML elements in coding.

4. Explain the role of web browsers in interpreting and displaying
HTML code.

5. Apply knowledge to write and modify basic HTML code to
create a simple web page.

1. Define HTML and its role in web page creation.

2. Identify and explain the structure of a web page
using HTML.

3. Recognise and describe HTML elements and
their functions.

4. Understand how web browsers interpret and
display HTML code.

5. Write and run basic HTML code to create a
simple web page.

Lesson: HTML Basic Elements

● Beginner  30 mins  Teacher/Student led  Student Quiz

Prepare to guide students through understanding basic HTML elements. Start with explaining heading tags, their importance
and usage. Move on to defining paragraphs, line breaks, and how to incorporate images with attributes. Discuss the concept of
links, their attributes and how to create them. Finally, encourage students to write their own HTML code using these elements.
Ensure to provide real-time examples and encourage hands-on practice.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and apply HTML heading tags from h1 to
h6.

2. Create and format paragraphs using the p tag.

3. Implement line breaks in HTML text using the br tag.

4. Insert and manipulate images using the img tag and
its attributes.

5. Create hyperlinks to other web pages using the a tag
and its attributes.

1. Identify and use HTML heading tags from <h1> to <h6>.

2. Define and implement paragraphs using the <p> tag.

3. Insert line breaks in HTML documents using the
 tag.

4. Embed images in HTML using the tag and its
attributes.

5. Create hyperlinks using the <a> tag and understand the
use of its attributes.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 2

Week 2

Lesson: HTML Tables

● Beginner  30 mins  Teacher/Student led  Student Quiz

Prepare to guide students through the process of creating HTML tables. Begin with an introduction to tables and their structure,
including headers, bodies, and footers. Then, delve into the specific HTML tags used to create tables, rows, and cells. Provide
examples and encourage students to practice coding their own tables. Finally, challenge students to add multiple rows to their
tables. Ensure students understand the importance of correctly nesting tags within each other.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the purpose and structure of HTML tables.

2. Identify and use HTML tags to create table headers,
bodies, and footers.

3. Create table rows and columns using appropriate
HTML tags.

4. Apply HTML coding to create a personalised table with
multiple rows and columns.

5. Develop skills to troubleshoot and correct HTML table
coding errors.

1. Identify and explain the structure and purpose of HTML
tables.

2. Create a basic HTML table using the <table>, <tr>, and
<td> tags.

3. Use <thead>, <tbody>, and <tfoot> tags to define the
header, body, and footer of a table.

4. Develop a multi-row HTML table with specific content in
each cell.

5. Apply CSS styling to HTML tables and their cells.

Lesson: Crafting Complex Tables

● Intermediate  30 mins  Teacher/Student led  Student Quiz

Prepare to guide students through the process of crafting complex HTML tables. Ensure they understand basic table creation
before introducing headers and footers. Highlight the importance of the 'rowspan' and 'colspan' attributes for merging cells.
Encourage experimentation with these attributes to see their effects. Finally, review the completed table to ensure
understanding.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Master the creation of basic HTML tables with multiple rows
and columns.

2. Understand and apply the concept of table headers for better
data context.

3. Learn to use the 'rowspan' attribute to merge cells vertically.

4. Learn to use the 'colspan' attribute to merge cells
horizontally.

5. Develop the ability to add footer rows to tables for summary
information.

1. Construct a basic HTML table with multiple rows
and columns.

2. Integrate a header row into the table for column
labelling.

3. Apply the 'rowspan' attribute to merge cells
vertically.

4. Utilise the 'colspan' attribute to merge cells
horizontally.

5. Add a footer row to the table for summary
information.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 3

Week 3

Lesson: HTML Lists

● Intermediate  30 mins  Teacher/Student led  Student Quiz

Prepare to introduce HTML lists, distinguishing between ordered and unordered types. Explain the use of and
tags for ordered lists, and the and tags for unordered lists. Discuss the 'type' attribute for customising list
markers. Demonstrate nested lists and encourage students to code their own lists, experimenting with different types and
nesting.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the purpose and usage of HTML lists.

2. Code ordered and unordered lists in HTML.

3. Manipulate the numbering of ordered lists and bullet
points of unordered lists.

4. Create nested lists in HTML.

5. Apply learned skills to code a personal list.

1. Identify and differentiate between ordered and
unordered HTML lists.

2. Code ordered lists using the and tags.

3. Manipulate the numbering type of ordered lists using
the 'type' attribute.

4. Code unordered lists using the and tags.

5. Alter the bullet point type of unordered lists using the
'type' attribute.

6. Create nested lists within both ordered and
unordered lists.

7. Apply learned skills to code a personalised list.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 4

Week 4

Lesson: Basics of Form Creation

● Intermediate  60 mins  Teacher/Student led  Student Quiz

In this lesson, teachers will guide students through the process of creating a basic HTML form. Starting with an introduction to
HTML forms, students will learn how to create a form container, add input fields, labels, a textarea, and a submit button. The
lesson encourages experimentation and exploration, allowing students to modify the code and observe the changes. Teachers
should emphasise the importance of each element and attribute in the form, and how they contribute to the overall functionality
and accessibility of the form.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the purpose and structure of HTML
forms

2. Create a form container using the <form>
element

3. Add and configure input fields for user data
collection

4. Implement labels for enhanced accessibility and
usability

5. Include a textarea for multi-line text input

6. Add a submit button to enable form submission

1. Understand and apply the HTML <form> element to create a
form container.

2. Create and utilise <input> fields for text and email data
collection.

3. Implement <label> elements for improved form accessibility and
usability.

4. Add a <textarea> element for multi-line text input.

5. Include a <button> with a type attribute set to submit to finalise
form creation.

Lesson: Advanced Input Types

● Advanced  60 mins  Teacher/Student led  Student Quiz

This lesson explores advanced HTML form input types: number, date, and colour. Teachers should guide students through the
creation of number, date, and colour input fields, demonstrating the enhanced functionality and user experience these types
offer. The lesson concludes with students enhancing a form with these advanced input types, applying their newly acquired
knowledge.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and utilise advanced HTML input types including
number, date, and colour.

2. Create a number input field for capturing numerical data such
as age.

3. Implement a date input field for selecting specific dates.

4. Use a colour input field for selecting a colour from a colour
picker.

5. Enhance a form by integrating advanced input types to improve
functionality and user experience.

1. Understand and apply the number input type in
HTML forms.

2. Understand and apply the date input type in
HTML forms.

3. Understand and apply the color input type in
HTML forms.

4. Create HTML forms utilising advanced input
types.

5. Enhance user experience by implementing
advanced input types in forms.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 5

Week 5

Lesson: Embedding Audio and Video

● Advanced  30 mins  Teacher/Student led  Student Quiz

In this lesson, teachers will guide students through the process of embedding audio and video into a webpage using HTML5.
They will start by discussing the importance of understanding supported formats for different web browsers. Students will then
learn how to embed audio and video files using the HTML5 <audio> and <video> tags. Teachers will encourage students to test
their work and reflect on their learning. The lesson will conclude with a review and encouragement for continued practice.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Identify and understand the different
audio and video formats supported by
HTML5.

2. Embed an audio file into a web page
using the HTML5 <audio> tag.

3. Embed a video file into a web page
using the HTML5 <video> tag.

4. Preview and test the functionality of
embedded audio and video players.

5. Reflect on the process and
importance of embedding multimedia
elements in web pages.

1. Identify and understand the common audio and video formats supported
by HTML5 and their compatibility with various web browsers.

2. Embed an audio file into a web page using the HTML5 <audio> tag and
provide an MP3 file as the source.

3. Embed a video file into a web page using the HTML5 <video> tag and
provide an MP4 file as the source.

4. Preview and test the functionality of the embedded audio and video
players, and experiment with different video dimensions.

5. Reflect on the process of embedding audio and video files into a web
page using HTML5 tags and understand the importance of compatibility
and user experience.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 6

Week 6

Lesson: Introduction to CSS

● Advanced  30 mins  Teacher/Student led  Student Quiz

Prepare to introduce students to CSS, the language for styling web pages. Explain what CSS is and how it interacts with HTML.
Discuss CSS rules, selectors, and declaration blocks. Use examples to illustrate how CSS changes the appearance of HTML
elements. Introduce the concept of element, ID, and class selectors. Explain the style property and how it can be used to directly
apply CSS to HTML elements. Provide exercises for students to practice writing CSS code and applying different selectors.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the purpose and function of
CSS in web development.

2. Identify and apply CSS rules including
selectors and declaration blocks.

3. Differentiate between element, ID, and
class selectors in CSS.

4. Apply CSS styles directly to HTML
elements using the style property.

5. Practice creating and applying CSS classes
to HTML elements.

1. Understand the purpose and function of CSS in web development.

2. Identify and apply CSS rules including selectors and declaration
blocks.

3. Use CSS to style HTML elements using element, ID, and class
selectors.

4. Apply CSS properties directly to HTML elements using the style
property.

5. Practice writing CSS code through exercises and understand how it
affects the appearance of HTML elements.

Lesson: CSS Box Model

● Advanced  30 mins  Teacher/Student led  Student Quiz

Prepare to guide students through understanding the CSS Box Model, including margins, borders, padding, and content.
Demonstrate how to apply different border styles, widths, and colours. Encourage students to experiment with padding and
margins to understand their impact on layout. The lesson includes practical exercises to reinforce learning. Ensure students
understand how to use the code examples provided.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the CSS Box Model and its components: margins,
borders, padding, and content.

2. Apply different styles, widths, and colours to CSS borders.

3. Manipulate padding in CSS to create space around content
within the border.

4. Use CSS margins to create space around elements, outside the
border.

5. Perform exercises to apply CSS Box Model properties to HTML
elements.

1. Identify and explain the components of the CSS
Box Model.

2. Apply CSS properties to create and modify
borders on HTML elements.

3. Use CSS properties to set border styles, widths,
and colours.

4. Apply CSS padding to create space around
content within an element.

5. Use CSS margins to create space around HTML
elements.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 7

Week 7

Lesson: CSS Text

● Advanced  40 mins  Teacher/Student led  Student Quiz

Prepare to guide students through the process of styling text using CSS. The lesson covers setting text and background colours,
alignment, decoration, transformation, spacing, and adding a shadow. Students will learn to use properties such as 'color', 'text-
align', 'text-decoration', 'text-transform', 'letter-spacing', 'word-spacing', 'line-height', 'text-indent', and 'text-shadow'. They will also
experiment with different values for these properties, including colour names, HEX values, RGB values, and pixel sizes.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and apply CSS properties to style text colour
and background colour.

2. Manipulate text alignment using CSS.

3. Use CSS to add or remove text decorations.

4. Transform text to uppercase, lowercase or capitalised
format using CSS.

5. Apply CSS properties to adjust text spacing and add text
shadow.

1. Apply CSS properties to style text colour and
background colour.

2. Align text using CSS properties.

3. Decorate text using underline, overline and line-
through CSS properties.

4. Transform text to uppercase, lowercase and capitalise
using CSS properties.

5. Apply CSS properties to set text spacing and add text
shadow.

Lesson: CSS Fonts

● Advanced  40 mins  Teacher/Student led  Student Quiz

Prepare to introduce students to CSS fonts, explaining their importance in web design. Discuss the 'font-family' property and
provide examples of commonly used font families. Explain the concept of 'web safe fonts' and the use of fallback fonts.
Introduce 'font-weight', 'font-size', and 'font-style' properties. Prepare an exercise where students will code a paragraph of text
using the discussed properties. Be ready to provide a solution and explain the code.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the importance of font selection in CSS and how it
impacts user experience.

2. Apply the 'font-family' property to set specific fonts for text
elements.

3. Use 'font-family' to specify fallback fonts when the primary font
is unavailable.

4. Manipulate 'font-weight', 'font-size', and 'font-style' properties to
modify the appearance of text.

5. Implement learned CSS font properties in a practical exercise.

1. Apply the CSS property 'font-family' to set
specific fonts for text.

2. Specify 'fallback' fonts using the 'font-family'
CSS property.

3. Manipulate the weight of the font using the
'font-weight' CSS property.

4. Adjust the size of the font using the 'font-size'
CSS property.

5. Change the style of the font using the 'font-
style' CSS property.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Web Design Basics / Unit: Week 8

Week 8

Lesson: CSS Website Layout

● Advanced  40 mins  Teacher/Student led  Student Quiz

This lesson focuses on CSS website layout. Teachers should familiarise themselves with the basic structure of a website,
including the header, content, and footer. The lesson covers how to code these areas using HTML and CSS, with practical
examples provided. It also explores different content layouts, such as one-column, two-column, and three-column layouts. The
lesson concludes with a comprehensive example of putting all the elements together to create a complete website layout.
Teachers should encourage students to experiment with the code examples provided.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the structure of a website layout including
header, content, and footer.

2. Develop skills to code and style a website header using
HTML and CSS.

3. Learn to create different content layouts such as one-
column, two-column, and three-column layouts.

4. Gain proficiency in using CSS to set column widths and
layout.

5. Acquire knowledge to code and style a website footer using
HTML and CSS.

1. Identify and code common website layout areas:
header, content, and footer using CSS.

2. Construct and style a website header with logo and
navigation menu.

3. Design and implement one, two, and three column
content layouts.

4. Manipulate column widths and padding to achieve
desired layout.

5. Create and style a website footer with company
information and secondary links.

6. Combine all elements to create a cohesive website
layout.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design

Module: Dynamic Web Design
This module covers the fundamentals of dynamic web design, starting with an overview of HTML, CSS,
and JavaScript. It then progresses to setting up essential tools, scripting and DOM manipulation, dynamic
form validation, and integrating external libraries and APIs. The module concludes with students creating
an interactive quiz game, a weather web app, and a web showcase. Teachers should encourage active
learning through hands-on coding exercises and challenges. Familiarity with CodePen, jQuery, and APIs is
beneficial.

Duration Equipment

8 weeks Students can use any of these devices:

Chromebook/Laptop/PC

iPad/Tablet

Module Goals Module Outcomes

1. Understand and apply the interaction of HTML,
CSS, and JavaScript in creating dynamic web
pages.

2. Set up and utilise essential web development
tools including code editors, browser developer
tools, and debugging consoles.

3. Master advanced scripting techniques for DOM
manipulation, including creating, deleting, and
modifying HTML elements.

4. Implement dynamic form validation with custom
messages using JavaScript, providing real-time
feedback for various input types.

5. Integrate external libraries such as jQuery and
APIs to pull dynamic data into web pages.

6. Design and develop interactive web applications,
such as a quiz game and a weather web app,
incorporating real-time data and user interaction.

1. Understand and apply the interaction of HTML, CSS, and
JavaScript to create dynamic web pages.

2. Set up and utilise essential web development tools including a
code editor, browser developer tools, and the console for
debugging.

3. Manipulate the DOM using advanced scripting techniques
such as creating, deleting, or modifying HTML elements
based on certain conditions or inputs.

4. Implement dynamic form validation with custom validation
messages using JavaScript, providing real-time feedback as
users fill out forms and validating different input types.

5. Integrate external libraries like jQuery and APIs to pull
dynamic data into web pages.

6. Develop an interactive quiz game that checks answers,
provides feedback, and incorporates timers, score trackers,
and dynamic question loading.

7. Create a Weather Web App that pulls real-time weather data
based on a location, and displays it in an engaging and
interactive manner.

8. Present a web showcase demonstrating the skills and
knowledge acquired throughout the course.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 1

Week 1

Lesson: Overview of how HTML, CSS, and JavaScript Interact

● Beginner  20 mins  Teacher/Student led  Student Quiz

Prepare to explain the analogy of web development to building a house, with HTML, CSS, and JavaScript as the structure, design,
and functionality respectively. Ensure understanding of the basic structures of HTML, CSS, and JavaScript, including their syntax
and usage. Highlight the synergy of these three languages in creating dynamic web pages. Be ready to discuss real-life
applications, such as creating a web-based quiz, to illustrate their interactivity. Conclude by emphasising the importance of
proficiency in all three components for effective web development.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand the roles of HTML, CSS, and JavaScript in web
development.

2. Comprehend the basic structure and syntax of HTML, CSS,
and JavaScript.

3. Apply CSS styles in different ways: inline, internal, and
external.

4. Recognise common uses of JavaScript in enhancing web
interactivity.

5. Appreciate the synergy of HTML, CSS, and JavaScript in
creating dynamic web pages.

1. Understand the roles of HTML, CSS, and JavaScript
in web development.

2. Identify the basic structure and elements of an
HTML document.

3. Apply CSS to control the appearance of a webpage.

4. Use JavaScript to add interactivity to web pages.

5. Integrate HTML, CSS, and JavaScript to create
dynamic web pages.

Lesson: Setting up Essential Tools

● Beginner  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson guides students through setting up essential web development tools. They'll learn about code editors, browser
developer tools, and the console for debugging. Students will explore CodePen, an online code editor, and create a basic
webpage using HTML, CSS, and JavaScript. They'll also add a button with an onclick event. The lesson concludes with a wrap-up
and encouragement for further practice.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Gain proficiency in using web development environments and
essential tools such as code editors, browser developer tools,
and the console for debugging.

2. Understand the features and benefits of using CodePen as an
online code editor.

3. Develop skills to inspect, debug, and optimise code using
browser developer tools.

4. Learn to use the console for identifying and resolving issues in
JavaScript code.

5. Apply knowledge to create a basic webpage on CodePen,
incorporating HTML, CSS, and JavaScript, and adding
interactive elements like buttons with onclick events.

1. Identify and utilise essential web development
tools including code editors, browser developer
tools, and the console for debugging.

2. Select and use CodePen as an online code editor
for writing and previewing HTML, CSS, and
JavaScript in real-time.

3. Inspect and debug code using browser developer
tools and the console.

4. Create and edit a basic webpage on CodePen
using HTML, CSS, and JavaScript.

5. Add interactive elements to a webpage, such as a
button with an onclick event, using JavaScript.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 2

Week 2

Lesson: Scripting and DOM Manipulation

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through a hands-on exploration of scripting and DOM manipulation. They'll set up a CodePen project,
create HTML structures, and add JavaScript functions. They'll learn to use 'onclick' attributes, event listeners, and manipulate
text colour and size. The lesson concludes with challenges to create small text and remove elements, reinforcing their
understanding of DOM manipulation.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand and apply the concept of DOM manipulation
using JavaScript.

2. Develop skills in creating and modifying HTML elements
dynamically.

3. Gain proficiency in handling events using JavaScript,
including click and mouseover events.

4. Learn to use JavaScript to alter CSS properties of HTML
elements.

5. Apply problem-solving skills to complete coding challenges
related to DOM manipulation.

1. Set up and utilise CodePen for HTML and
JavaScript scripting.

2. Create and manipulate HTML structure using
JavaScript.

3. Implement JavaScript functions to dynamically
add elements to a webpage.

4. Utilise event listeners to trigger JavaScript
functions.

5. Manipulate CSS properties of HTML elements
through JavaScript.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 3

Week 3

Lesson: Dynamic Form Validation with JavaScript

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare for a hands-on lesson on dynamic form validation using JavaScript. Familiarise yourself with the CodePen environment,
as students will be setting up their projects there. The lesson will guide students through creating a form, styling it with CSS, and
adding JavaScript for validation. They will learn to validate fields for name, email, and password, ensuring the correct length and
format. The lesson concludes with a challenge to add an age field and validate it.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Understand how to set up a project on CodePen
for HTML, CSS, and JavaScript development.

2. Create and style a form using HTML and CSS.

3. Implement JavaScript code to validate form
fields for specific requirements.

4. Test form validation and handle form submission
using JavaScript.

5. Extend JavaScript validation to new form fields,
demonstrating adaptability of skills.

1. Set up a project environment in CodePen.

2. Create a form with name, email, and password fields using
HTML.

3. Style the form using CSS for better visual appeal.

4. Implement JavaScript code to prevent form submission and
enable validation.

5. Validate the name field to ensure it is at least 3 characters
long.

6. Validate the email field to ensure it contains '@' and '.'
characters.

7. Validate the password field to ensure it is at least 8 characters
long and contains at least one number and one letter.

8. Test the form by entering different values and checking if the
validation works as expected.

9. Add an age field and validate it to ensure the person is over
13.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 4

Week 4

Lesson: Integrating External Libraries and APIs

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through the process of integrating external libraries and APIs into a project. The lesson involves
setting up a project on CodePen, adding jQuery, creating an HTML structure, understanding jQuery syntax, selectors, and events,
adding a click event listener, fetching weather data with an API, displaying the weather data, and extending the functionality of
the weather app. The lesson concludes with wrapping up the weather app and encouraging students to explore more advanced
features and APIs.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop proficiency in setting up a new project on CodePen.

2. Gain understanding and practical skills in integrating jQuery
into a project.

3. Master the creation of HTML structures and the application
of jQuery syntax and selectors.

4. Learn to handle jQuery events and implement event
listeners.

5. Acquire skills in fetching data from external APIs and
integrating it into a web application.

1. Set up a new project using CodePen and integrate
jQuery library.

2. Create a basic HTML structure for a web
application.

3. Understand and apply jQuery syntax to select and
manipulate HTML elements.

4. Handle user interactions using jQuery event
listeners.

5. Fetch and display real-time weather data from an
external API.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 5

Week 5

Lesson: Interactive Quiz Game

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson guides students through creating an interactive quiz game using HTML, CSS, and JavaScript. They'll learn how to set
up a project on CodePen, structure HTML for the game, style it with CSS, and add functionality with JavaScript. The lesson
includes adding a jQuery library, setting up questions, variables, and functions to display questions, check answers, and display
scores. It concludes with challenges to add a timer and different difficulty levels to the game.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop skills in setting up a coding project using
CodePen.

2. Understand and apply HTML structure to create an
interactive quiz game.

3. Apply CSS styling to enhance the visual presentation
of the quiz game.

4. Utilise jQuery library to manipulate HTML elements
and handle user interactions.

5. Create and manipulate JavaScript arrays and objects
to store quiz questions and answers.

1. Create a new project on CodePen and add HTML
structure for an interactive quiz game.

2. Apply CSS styling to HTML elements for visual
enhancement.

3. Integrate the jQuery library into the project for dynamic
features.

4. Set up an array of question objects and variables for
tracking quiz progress.

5. Display questions and answer options dynamically, and
check user's answers for correctness.

6. Implement functionality to move to the next question
after an answer is selected.

7. Display the user's score after all questions have been
answered.

8. Enhance the quiz game with a timer for each question.

9. Add different difficulty levels to the quiz game for varied
user experience.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 6

Week 6

Lesson: Weather Web App

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will create a Weather Web App using HTML, CSS, and JavaScript. They will learn how to fetch and display
real-time weather data using APIs and jQuery. The lesson will guide them through setting up the project, adding jQuery and
Fontawesome, creating the HTML structure, styling the structure and headings, initializing JavaScript, fetching and displaying
weather data, adding a unit toggle, and testing the app. They will also be encouraged to enhance their app by adding additional
features such as a search bar and displaying more weather information.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Develop a functional weather web application using HTML,
CSS, and JavaScript.

2. Utilise jQuery for efficient manipulation of HTML documents.

3. Integrate and use external libraries such as Fontawesome for
enhanced visual appeal.

4. Fetch and display real-time weather data using APIs.

5. Implement a feature to toggle between Celsius and
Fahrenheit temperature units.

1. Develop a Weather Web App using HTML, CSS,
and JavaScript.

2. Integrate jQuery and Fontawesome libraries into a
web project.

3. Construct HTML structure to display weather
data.

4. Style the web app using CSS for an engaging user
interface.

5. Fetch and display real-time weather data from an
API using JavaScript.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Dynamic Web Design / Unit: Week 7

Week 7

Lesson: Web Showcase

● Advanced  60 mins  Teacher/Student led

Prepare for a hands-on session where students will brainstorm, design, and code their own web page. Encourage creativity in
content and design, emphasising the importance of HTML structure, CSS styling, and JavaScript interactivity. Guide them
through project setup, content addition, styling, and refining their work. Ensure they test their work across different screen sizes
and browsers, and foster a collaborative environment for feedback sharing.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

iPad/Tablet

Learning Goals Learning Outcomes

1. Generate creative and unique ideas for a web page
design and content.

2. Establish a basic HTML structure for a web project
using Codepen.

3. Implement diverse HTML elements to structure and
add content to a web page.

4. Apply CSS for styling, enhancing visual appeal and
readability of the web page.

5. Integrate JavaScript to add interactivity to the web
page and ensure its functionality.

6. Review, refine, and optimise the web page for
different screen sizes and browsers, while seeking
and incorporating feedback.

1. Generate and articulate creative ideas for a web page
design.

2. Establish a web project using Codepen, incorporating the
basic structure of an HTML document.

3. Implement HTML to structure and add diverse content to a
web page.

4. Apply CSS to enhance the visual appeal of the web page,
experimenting with colours, fonts, and layouts.

5. Integrate JavaScript to add interactivity to the web page,
ensuring functionality through thorough testing.

6. Evaluate and refine the web page, ensuring code
cleanliness, cross-browser compatibility, and
responsiveness, and seek peer feedback.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python

Module: Introduction to Python
This module provides an introduction to Python programming, starting with basic syntax and the Microbit
Python editor. Teachers should guide students through setting up their first project, creating a simple
program, and introducing code sequence. The module progresses to cover variables, loops, conditional
statements, operators, arrays, and functions. Each module includes a practical project to reinforce
learning. The module culminates in a final project where students apply their skills to create a unique
MicroPython project. Teachers should encourage experimentation and provide regular feedback.

Duration Equipment

10 weeks Students can use any of these devices:

Chromebook/Laptop/PC

Required Equipment:

Microbit

Module Goals Module Outcomes

1. Understand and apply basic Python syntax
and programming concepts using the
Micro:bit Python editor.

2. Master the use of variables, including
declaration, assignment, and manipulation
in Python.

3. Comprehend and implement different types
of loops and conditional statements in
Python programming.

4. Learn about and apply comparison
operators, logical operators, and
conditional Booleans in Python.

5. Gain proficiency in working with arrays,
including creating, manipulating, and
applying advanced array tactics in Python.

1. Understand and apply basic Python syntax and use the Micro:bit
Python editor to create simple programs.

2. Declare, assign, and manipulate variables in Python, culminating in
the creation of a higher or lower game.

3. Understand and implement different types of loops in Python,
including while loops, for loops, and nested loops, and apply these in
a reaction time game.

4. Use conditional statements in Python to make decisions in code and
apply these concepts in a Dice Roller project.

5. Understand and use comparison operators, logical operators, and
conditional Booleans in Python, and apply these in a Temperature
Indicator project.

6. Work with arrays in Python, including creating, manipulating, and
retrieving elements from a list, and apply these skills in an LED light
pattern project.

7. Perform advanced operations with arrays in Python, including
sorting, finding the length of a list, and counting occurrences, and
apply these in a strong password generator project.

8. Understand the differences between procedures and functions in
Python and apply this knowledge in a weather station project.

9. Understand the distinctions between local and global variables,
understand variable scope, and apply these concepts in a Micro:bit
temperature logger project.

10. Conceptualize, plan, and build a unique project using Python and the
Micro:bit, applying all the skills and knowledge acquired throughout
the course.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 1

Week 1

Lesson: An Introduction to Python

● Intermediate  30 mins  Teacher/Student led  Student Quiz

Prepare to introduce Python as a beginner-friendly programming language, highlighting its use in various fields. Familiarise
yourself with the Micro:bit Python editor for practical application. Discuss Python's syntax, particularly the importance of
indentation and comments. Guide students through writing their first Python program and adding comments for clarity. Explain
the sequence of code execution using a simple program. Encourage further practice and exploration post-lesson.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and apply the basics of Python
programming language.

2. Utilise the Micro:bit Python editor for code
writing and testing.

3. Comprehend and implement Python's
indentation rules to define code blocks.

4. Use Python comments for code explanation
and documentation.

5. Write, run, and debug simple Python programs
using Micro:bit.

1. Understand and explain the basics of Python programming
language and its application in various fields.

2. Access and navigate the Micro:bit Python editor for writing and
testing Python code.

3. Apply Python indentation rules to define code blocks correctly.

4. Use Python comments to add notes and explanations to the
code.

5. Write, run, and debug a simple Python program using the
Micro:bit Python editor.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 2

Week 2

Lesson: Mastering Variables

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson guides students through the process of mastering variables in Python. They will learn about variable declaration,
assignment, types, and naming conventions. The lesson also includes practical exercises such as creating a higher or lower
game using the Microbits Python editor. Teachers should ensure students understand the concept of variables, their types, and
how to manipulate them. They should also facilitate the game creation exercise, helping students apply their knowledge in a
practical context.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand the concept of variables in Python, including
their declaration, assignment, and types.

2. Learn and apply good variable naming conventions in
Python.

3. Manipulate variable values through operations such as
incrementing, decrementing, and string concatenation.

4. Apply knowledge of variables in creating a simple higher
or lower game using the Microbits Python editor.

5. Gain familiarity with importing and using libraries in
Python, specifically for game development.

1. Understand and apply the concept of variables in
Python, including declaration, assignment, and types.

2. Manipulate variable values through incrementing,
decrementing, and string concatenation.

3. Adhere to good naming conventions for variables,
specifically snake_case and camelCase.

4. Import and utilise libraries in Python, specifically for
the creation of a higher or lower game.

5. Develop a simple higher or lower game using
variables, loops, conditionals, and libraries in Python.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 3

Week 3

Lesson: Looping Around

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

This lesson will guide students through understanding loops in Python, focusing on while loops, for loops, and nested loops.
They will learn how Python uses indentation to define code blocks and how to break out of loops. The lesson includes practical
exercises to reinforce learning, such as creating a project to measure reaction times. Teachers should ensure students
understand the importance of consistent indentation and how loops can be used to control the flow of a program.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

Understand the importance of
indentations in Python and how they
define code blocks.

Learn how to use 'while' loops and 'for'
loops to repeat code execution based
on conditions.

Explore nested loops and how they can
be used to iterate through multiple
dimensions.

Learn how to break out of loops using
the 'break' statement when a specific
condition is met.

Apply the knowledge of loops and
control structures to create a simple
reaction time game.

Develop problem-solving skills by
modifying and extending the provided
code examples.

By the end of this lesson, students will be able to identify and
differentiate between while loops, for loops, and nested loops in Python.

Students will be able to demonstrate the use of proper indentation in
Python code to define code blocks.

Students will be able to create and manipulate while loops and for loops
to execute a block of code multiple times.

Students will be able to implement nested loops to control the flow of
their program through multiple levels of iteration.

Students will be able to use the 'break' statement to exit a loop
prematurely based on a specific condition.

Students will be able to apply their knowledge of loops and control
structures to create a simple reaction time game using the micro:bit's
LED matrix and buttons.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 4

Week 4

Lesson: Making Decisions

● Intermediate  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through understanding conditional statements in MicroPython, including 'if', 'elif', and 'else'. They will
create a simple project to reinforce their understanding, and then apply these concepts to a Dice Roller project. Ensure students
understand how to use the Microbit Python Editor, and are comfortable with concepts such as loops, conditions, and using the
micro:bit's accelerometer. Encourage experimentation with different conditions and scenarios to deepen their understanding.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Comprehend and apply conditional statements in
coding, including 'if', 'elif', and 'else'.

2. Develop a basic project using 'if' statements to
demonstrate understanding.

3. Understand and implement 'elif' and 'else' statements
to create complex decision-making structures.

4. Grasp the concept of nested 'if' statements and their
application in coding.

5. Create a Dice Roller project utilising 'if', 'elif', and 'else'
statements, demonstrating the ability to make
decisions in code based on specific conditions.

1. Apply conditional statements in Python code, specifically
if, elif, and else statements.

2. Construct a simple if statement to check a condition and
execute a block of code.

3. Create complex decision-making structures using elif and
else statements in conjunction with if statements.

4. Utilise nested if statements to check multiple conditions
within a single if statement.

5. Develop a Dice Roller project using the micro:bit's
accelerometer, random number generation, and
conditional statements to display different outcomes.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 5

Week 5

Lesson: Operators Decoded

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through understanding comparison and logical operators, and conditional Booleans in MicroPython.
They'll apply these concepts in a practical project, creating a temperature indicator using the Microbit's online editor. Ensure they
understand how to use these operators in 'if' and 'elif' statements. Encourage experimentation with different values to see how it
affects conditions. The final project will involve using comparison and logical operators to determine temperature ranges and
display appropriate images.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and apply comparison operators
in MicroPython.

2. Understand and apply logical operators in
MicroPython.

3. Understand and utilise conditional Booleans in
MicroPython.

4. Create a temperature indicator project using
MicroPython and Micro:bit.

5. Apply knowledge of operators and conditional
Booleans in practical coding scenarios.

1. Understand and apply comparison operators in MicroPython.

2. Utilise logical operators to combine conditional statements in
MicroPython.

3. Implement conditional Booleans to make decisions based on the
result of a condition.

4. Create a temperature indicator project using the built-in
temperature sensor of Micro:bit.

5. Apply comparison and logical operators to determine
temperature range and display appropriate images on Micro:bit.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 6

Week 6

Lesson: Array Essentials

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, teachers will guide students through the basics of working with arrays in MicroPython, using the micro:bit Python
editor. Students will learn what an array is, how to create a list, retrieve and change list elements, add and remove elements from
a list. The lesson culminates in a project where students will use arrays to create patterns of lights on the micro:bit LED display.
Teachers should ensure students understand each step before moving on to the next.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand and apply the concept of arrays in
MicroPython.

2. Create, retrieve, and modify elements in a list.

3. Add and remove elements from a list.

4. Use arrays to create patterns of lights on the
micro:bit LED display.

5. Combine and manipulate multiple arrays to create
complex data structures.

1. Understand and define arrays in MicroPython.

2. Create, retrieve, and manipulate elements in a list.

3. Add and remove elements from a list using append(),
extend(), remove(), and pop() methods.

4. Use arrays to store and manage data in MicroPython
programs.

5. Apply array manipulation skills to create an LED light pattern
project on a micro:bit.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 7

Week 7

Lesson: Advanced Array Tactics

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through advanced operations on Python lists using MicroPython. The lesson covers sorting lists in
ascending and descending order, finding the length of a list, counting occurrences in lists, and applying these skills to create a
strong password generator. Ensure students understand the use of sort(), len(), and count() methods, and how to use loops and
random.choice() function. Encourage them to experiment with the code in their own projects.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Master advanced operations on lists in Python, including
sorting in ascending and descending order.

2. Understand how to determine the length of a list using the
len() function.

3. Learn to count the occurrences of a specific item in a list
using the count() method.

4. Apply the learned concepts in a practical project to create
a strong password generator.

5. Develop skills in manipulating and analysing data stored in
lists.

1. Sort a list in ascending order using the sort() method
in MicroPython.

2. Sort a list in descending order using the
sort(reverse=True) method in MicroPython.

3. Determine the length of a list using the len() function
in MicroPython.

4. Count occurrences of a specific item in a list using
the count() method in MicroPython.

5. Generate a strong, random password using a
combination of character sets in MicroPython.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 8

Week 8

Lesson: Function Junction

● Advanced  60 mins  Teacher/Student led  Student Quiz  Student Challenge

In this lesson, students will delve into Python programming, focusing on procedures and functions. They will learn the difference
between the two, create simple procedures and functions using the micro:bit, and understand the use of parameters in
functions. The lesson culminates in a project where students design a simplified weather station using their new skills. This
hands-on approach will help reinforce their understanding of procedures and functions in Python.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand the difference between procedures and
functions in Python programming.

2. Create and utilise procedures in Python code.

3. Create and utilise functions in Python code, including
those that return values.

4. Develop functions with parameters to enhance
flexibility and functionality.

5. Apply knowledge of procedures and functions to
create a simple weather station project using
MicroPython and Micro:bit.

1. Differentiate between procedures and functions in Python
programming.

2. Create and utilise a procedure in Python to display a
smiley face on the micro:bit's display.

3. Develop a function in Python that returns the square of a
number and display the result on the micro:bit.

4. Construct a function with parameters in Python that takes
two numbers and returns their sum, displaying the result
on the micro:bit.

5. Design and implement a simplified weather station on the
micro:bit using procedures and functions.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 9

Week 9

Lesson: Scope Showdown: Local vs. Global

● Expert  60 mins  Teacher/Student led  Student Quiz  Student Challenge

Prepare to guide students through understanding the concept of local and global variables in programming. Start with an
introduction to the term 'scope', followed by a detailed explanation of local variables using Python code. Then, introduce global
variables and their usage. Discuss best practices for using global variables. The lesson culminates in a practical project where
students create a temperature logger using MicroPython, applying their understanding of local and global variables. Finally, wrap
up the lesson by reinforcing the importance of variable scope in coding projects.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Understand the concept of variable scope in
programming.

2. Distinguish between local and global variables
and their usage.

3. Apply the concept of local and global variables
in Python programming.

4. Adhere to best practices when using global
variables.

5. Develop a Micro:bit temperature logger project
using both local and global variables.

1. Understand and differentiate between local and global variables
in programming.

2. Identify the scope of a variable and its accessibility within a
program.

3. Apply the concept of local variables within a function,
demonstrating their limited scope.

4. Utilise global variables appropriately within a program,
demonstrating their wider scope.

5. Combine the use of local and global variables in a practical
project, demonstrating understanding of best practices.

Teacher Learning Plan / Digital Skills Curriculum 2024/25 / Transition Year / Module: Introduction to Python / Unit: Week 10

Week 10

Lesson: Python Showcase

● Expert  60 mins  Teacher/Student led

Prepare to guide students through a creative process of conceptualising, planning, and building a MicroPython project.
Encourage brainstorming, idea selection, and project proposal creation. Facilitate feedback sessions and assist in refining ideas.
Support students during the coding process, ensuring they test their code regularly. Finally, help students prepare a presentation
to demonstrate their project, followed by a reflection on their learning journey.

Students can use any of these devices (and can share if necessary):

Chromebook/Laptop/PC

Required equipment for this lesson:

Microbit

Learning Goals Learning Outcomes

1. Develop creative problem-solving skills through
conceptualising and planning a MicroPython project.

2. Enhance brainstorming abilities and apply previous
knowledge to generate project ideas.

3. Improve communication skills by presenting project
proposals and seeking feedback.

4. Strengthen coding skills through prototyping and
building a MicroPython project.

5. Reflect on the learning experience, identifying challenges
faced and strategies used to overcome them.

1. Generate and refine project ideas related to
MicroPython and Micro:bit.

2. Develop a comprehensive project proposal including
purpose, features, and required components.

3. Seek and incorporate feedback to improve the project
concept.

4. Code, test, and debug a MicroPython project on the
Micro:bit.

5. Present the completed project, demonstrating its
features and discussing the development process.

© 2025 Coding Ireland. All rights reserved.

This learning plan and its contents are provided exclusively for use with the Digital Skills Curriculum and may not be reproduced,
distributed, or shared without prior written permission from Coding Ireland. For more information, please visit
www.codingireland.ie.

	Teacher Learning Plan
	Digital Skills Curriculum 2024/25

	Table of Contents
	How to Use This Learning Plan
	Lesson Types
	Flexible Curriculum Approach
	Student Access
	Getting Started

	Module: Introduction to Coding Concepts
	Week 1
	Lesson: An Introduction to Coding
	Lesson: Scratch Tutorial

	Week 2
	Lesson: Paddle Ball Game

	Week 3
	Lesson: Racing Car

	Week 4
	Lesson: Red v Green v Blue

	Week 5
	Lesson: Pattern Creator

	Week 6
	Lesson: Attack of the Dots

	Week 7
	Lesson: Autonomous Car

	Week 8
	Lesson: Rocket Lander

	Week 9
	Lesson: Project Showcase

	Module: Exploring Microbit Programming
	Week 1
	Lesson: Exploring Microbits

	Week 2
	Lesson: Microbit Step Counter

	Week 3
	Lesson: Reaction Timer

	Week 4
	Lesson: Higher or Lower Game

	Week 5
	Lesson: Microbit Paddle Ball

	Week 6
	Lesson: Microbit Compass and Thermometer

	Week 7
	Lesson: Microbit Voting System

	Week 8
	Lesson: Chase the Dot

	Week 9
	Lesson: Microbit Showcase

	Module: Game Design Essentials
	Week 1
	Lesson: First Arcade Project

	Week 2
	Lesson: Space Dodge

	Week 3
	Lesson: Bat Battle

	Week 4
	Lesson: Space Shooter

	Week 5
	Lesson: Platform Place

	Week 6
	Lesson: Dino Jump

	Week 7
	Lesson: Monster Battle Arena

	Week 8
	Lesson: Donut Rush

	Module: Robotic Cars and Automation
	Week 1
	Lesson: What is a Robot?
	Lesson: History of robotics
	Lesson: Future of robotics

	Week 2
	Lesson: Build your Traffic Lights
	Lesson: Microbit Traffic Lights

	Week 3
	Lesson: Build your Move Motor Sensor Car

	Week 4
	Lesson: Line Following Car

	Week 5
	Lesson: Move Motor Measure

	Week 6
	Lesson: Car Distance Sensors

	Week 7
	Lesson: Tilt Remote Control Car

	Week 8
	Lesson: Traffic Lights and Car Communication

	Week 9
	Lesson: Attach the Move Motor Klaw
	Lesson: Robot Car Claw

	Module: Exploring Digital Art and Design
	Week 1
	Lesson: Introduction to Digital Art
	Lesson: Overview of digital art software and tools

	Week 2
	Lesson: Basic Navigation and Interface

	Week 3
	Lesson: Understanding the Different Types of Brushes and Tools

	Week 4
	Lesson: Creating basic shapes

	Week 5
	Lesson: Experimenting with Different Brush Strokes and Effects

	Week 6
	Lesson: Introduction to Color Theory

	Week 7
	Lesson: Using Color in Digital Art

	Week 8
	Lesson: Digital Art Showcase

	Module: Web Design Basics
	Week 1
	Lesson: Introduction to HTML
	Lesson: HTML Basic Elements

	Week 2
	Lesson: HTML Tables
	Lesson: Crafting Complex Tables

	Week 3
	Lesson: HTML Lists

	Week 4
	Lesson: Basics of Form Creation
	Lesson: Advanced Input Types

	Week 5
	Lesson: Embedding Audio and Video

	Week 6
	Lesson: Introduction to CSS
	Lesson: CSS Box Model

	Week 7
	Lesson: CSS Text
	Lesson: CSS Fonts

	Week 8
	Lesson: CSS Website Layout

	Module: Dynamic Web Design
	Week 1
	Lesson: Overview of how HTML, CSS, and JavaScript Interact
	Lesson: Setting up Essential Tools

	Week 2
	Lesson: Scripting and DOM Manipulation

	Week 3
	Lesson: Dynamic Form Validation with JavaScript

	Week 4
	Lesson: Integrating External Libraries and APIs

	Week 5
	Lesson: Interactive Quiz Game

	Week 6
	Lesson: Weather Web App

	Week 7
	Lesson: Web Showcase

	Module: Introduction to Python
	Week 1
	Lesson: An Introduction to Python

	Week 2
	Lesson: Mastering Variables

	Week 3
	Lesson: Looping Around

	Week 4
	Lesson: Making Decisions

	Week 5
	Lesson: Operators Decoded

	Week 6
	Lesson: Array Essentials

	Week 7
	Lesson: Advanced Array Tactics

	Week 8
	Lesson: Function Junction

	Week 9
	Lesson: Scope Showdown: Local vs. Global

	Week 10
	Lesson: Python Showcase

